20.在四面體S-ABC中,AB⊥BC,AB=BC=$\sqrt{2}$,SA=SC=2,SB=$\sqrt{6}$,則該四面體外接球的體積是( 。
A.8$\sqrt{6}$πB.$\sqrt{6}$πC.24πD.

分析 證明SA⊥AB,SC⊥BC,可得SB的中點(diǎn)為四面體外接球的球心,球的半徑為$\frac{\sqrt{6}}{2}$,即可求出該四面體外接球的體積.

解答 解:∵AB=BC=$\sqrt{2}$,SA=SC=2,SB=$\sqrt{6}$,
∴SA2+AB2=SC2+BC2=SB2
∴SA⊥AB,SC⊥BC,
∴SB的中點(diǎn)為四面體外接球的球心,球的半徑為$\frac{\sqrt{6}}{2}$,
∴該四面體外接球的體積是$\frac{4}{3}π•(\frac{\sqrt{6}}{2})^{3}$=$\sqrt{6}$π,
故選:B.

點(diǎn)評(píng) 解決此類問題的關(guān)鍵是熟悉幾何體的結(jié)構(gòu)特征,利用已知條件求出線段長度,進(jìn)而確定球心的位置.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若x,y滿足$\left\{{\begin{array}{l}{x+2y≤2}\\{x+y≥0}\\{x≤4}\end{array}}\right.$,則z=2x+3y的取值范圍是[-4,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.定義實(shí)數(shù)a,b間的計(jì)算法則如下a△b=$\left\{\begin{array}{l}a,\;\;a≥b\\{b^2},a<b\end{array}$.
(1)計(jì)算2△(3△1);
(2)對(duì)0<x<z<y的任意實(shí)數(shù)x,y,z,判斷x△(y△z)與(x△y)△z的大小,并說明理由;
(3)寫出函數(shù)y=(1△x)+(2△x),x∈R的解析式,作出該函數(shù)的圖象,并寫出該函數(shù)單調(diào)遞增區(qū)間和值域(只需要寫出結(jié)果).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知二次函數(shù)f(x)滿足f(x+1)-f(x)=2x-3,且f(0)=2.
(1)求f(x)的解析式;
(2)若g(x)=-2x+m,且y=f(x)的圖象恒在y=g(x)的圖象上方,試確定實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.若x>2,求$\frac{{x}^{2}-4x+5}{x-2}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)$f(x)=\sqrt{x}$的反函數(shù)是f-1(x)=x2(x≥0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足:對(duì)任意不小于2的正整數(shù)n,都有a1+a2+a3+…+an-1+kan=tan2-1(k,t為常數(shù))成立.
(1)k=$\frac{1}{2}$,t=$\frac{1}{4}$,問:數(shù)列{an}是否為等差數(shù)列?并說明理由;
(2)若數(shù)列{an}是等比數(shù)列,求證:t=0且k<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=lnx+$\frac{1-x}{ax}$,其中a為大于零的常數(shù)..
(1)若函數(shù)f(x)在區(qū)間[1,+∞)內(nèi)單調(diào)遞增,求a的取值范圍;
(2)求函數(shù)f(x)在區(qū)間[1,2]上的最小值;
(3)求證:對(duì)于任意的n∈N*,且n>1時(shí),都有l(wèi)nn>$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.曲線y=$\frac{1}{x}$與直線y=x,x=e以及x軸所圍成的封閉圖形的面積為$\frac{3}{2}$.

查看答案和解析>>

同步練習(xí)冊答案