5.已知集合A={x|y=$\sqrt{x-1}$},B={x|-1≤2x-1≤3},則A∩B=( 。
A.[0,1]B.[1,2]C.[1,$\frac{3}{2}$]D.[0,2]

分析 求出A中x的范圍確定出A,求出B中不等式的解集確定出B,找出兩集合的交集即可.

解答 解:由A中y=$\sqrt{x-1}$,得到x-1≥0,
解得:x≥1,即A=[1,+∞),
由B中不等式解得:0≤x≤2,即B=[0,2],
則A∩B=[1,2],
故選:B.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且b=acosc+$\frac{{\sqrt{3}}}{3}$csinA.
(Ⅰ)求角A的大;
(Ⅱ)當(dāng)a=3時(shí),求△ABC周長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若集合A={x|(x-1)2<4},B={x||x|>1},則A∩(∁RB)=(  )
A.{x|-1<x≤1}B.{x|-1≤x<1}C.{x|-1≤x≤1}D.{x|-1<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在平面直角坐標(biāo)系中,兩點(diǎn)P1(x1,y1),P2(x2,y2)間的“L-距離”定義為|P1P2|=|x1-x2|+|y1-y2|.現(xiàn)將邊長(zhǎng)為1的正三角形ABC按如圖所示的方式放置,其中頂點(diǎn)A與坐標(biāo)原點(diǎn)重合.記邊AB所在直線的斜率為k,0≤k≤$\sqrt{3}$.求:當(dāng)|BC|取最大值時(shí),邊AB所在直線的斜率的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.某市汽車牌照號(hào)碼構(gòu)成是:前兩位為英文字母,后三位數(shù)字,如DE668,其中牌照號(hào)碼最后一個(gè)數(shù)字為8的牌照號(hào)碼共有(  )
A.(C${\;}_{26}^{1}$)2A${\;}_{10}^{2}$B.A${\;}_{26}^{2}$A${\;}_{10}^{2}$C.(C${\;}_{26}^{1}$)2102D.A${\;}_{26}^{2}$102

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.終邊落在第二象限的角組成的集合為( 。
A.{α|kπ<α<$\frac{π}{2}$+kπ,k∈Z}B.{α|$\frac{π}{2}$+kπ<α<π+kπ,k∈Z}
C.{α|2kπ<α<$\frac{π}{2}$+2kπ,k∈Z}D.{α|$\frac{π}{2}$+2kπ<α<π+2kπ,k∈Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=sin(2x+$\frac{π}{4}$).
(Ⅰ)用“五點(diǎn)法”作出f(x)在長(zhǎng)度為一個(gè)周期的閉區(qū)間上的簡(jiǎn)圖;
(Ⅱ)寫出f(x)的對(duì)稱中心以及單調(diào)遞增區(qū)間;
(Ⅲ)求f(x)的最大值以及取得最大值時(shí)x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知∠A=45°,a=6.
(1)若∠C=105°,求b;
(2)求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.四棱柱ABCD-A1B1C1D1的底面ABCD為矩形,AB=2,AD=4,AA1=6,∠A1AB=∠A1AD=60°,則AC1的長(zhǎng)為( 。
A.$8\sqrt{2}$B.46C.$2\sqrt{23}$D.32

查看答案和解析>>

同步練習(xí)冊(cè)答案