11.2015年7月9日21時(shí)15分,臺(tái)風(fēng)“蓮花”在我國(guó)廣東省陸豐市甲東鎮(zhèn)沿海登陸,造成165.17萬(wàn)人受災(zāi),5.6萬(wàn)人緊急轉(zhuǎn)移安置,288間房屋倒塌,46.5千公頃農(nóng)田受災(zāi),直接經(jīng)濟(jì)損失12.99億元.距離陸豐市222千米的梅州也受到了臺(tái)風(fēng)的影響,適逢暑假,小明調(diào)查了梅州某小區(qū)的50戶居民由于臺(tái)風(fēng)造成的經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五組,并作出如圖頻率分布直方圖:

(1)試根據(jù)頻率分布直方圖估計(jì)小區(qū)平均每戶居民的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)小明向班級(jí)同學(xué)發(fā)出倡議,為該小區(qū)居民捐款,現(xiàn)從損失超過(guò)4000元的居民中隨機(jī)抽出2戶進(jìn)行捐款援助,設(shè)抽出損失超過(guò)8000元的居民為ξ戶,求ξ的分布列和數(shù)學(xué)期望;
(3)臺(tái)風(fēng)后區(qū)委會(huì)號(hào)召小區(qū)居民為臺(tái)風(fēng)重災(zāi)區(qū)捐款,小明調(diào)查的50戶居民捐款情況如圖,根據(jù)圖表格中所給數(shù)據(jù),分別求b,c,a+b,c+d,a+c,b+d,a+b+c+d的值,并說(shuō)明是否有95%以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?
經(jīng)濟(jì)損失不超過(guò)4000元經(jīng)濟(jì)損失超過(guò)4000元合計(jì)
捐款超過(guò)500元a=30b
捐款不超過(guò)500元cd=6
合計(jì)
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
附:臨界值表參考公式:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,n=a+b+c+d.

分析 (1)求得各組區(qū)間的中點(diǎn)值,計(jì)算各個(gè)矩形的面積之和即可每戶居民的平均損失;
(2)由頻率分布直方圖可得,損失超過(guò)4000元的居民共有15戶;損失超過(guò)8000元的居民共有3戶,因此,ξ可能取值為0,1,2,運(yùn)用排列組合的知識(shí),可得各自的概率,由期望公式計(jì)算即可得到;
(3)由(2)可得a,b,c,d,運(yùn)用臨界值參考公式,求出K2,與臨界值比較,即可有95%以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān).

解答 解:(1)記每戶居民的平均損失為$\overline x$元,
則$\overline x$=(1000×0.00015+3000×0.0002+5000×0.00009+7000×0.00003+9000×0.00003)×2000=3360…(4分)
(2)由頻率分布直方圖,可得超過(guò)4000元的居民共有
(0.00009+0.00003+0.00003)×2000×50=15戶,
損失超過(guò)8000元的居民共有0.00003×2000×50=3戶,
因此,ξ的可能值為0,1,2.
P(ξ=0)=$\frac{{C}_{12}^{2}}{{C}_{15}^{2}}$=$\frac{22}{35}$,
P(ξ=1)=$\frac{{C}_{3}^{1}{C}_{12}^{1}}{{C}_{15}^{2}}$=$\frac{12}{35}$,
P(ξ=2)=$\frac{{C}_{3}^{2}}{{C}_{15}^{2}}$=$\frac{1}{35}$,
∴ξ的分布列為

ξ012
P$\frac{22}{35}$$\frac{12}{35}$$\frac{1}{35}$
數(shù)學(xué)期望E(ξ),$E(ξ)=0×\frac{22}{35}+1×\frac{12}{35}+2×\frac{1}{35}=\frac{2}{5}$…(8分)
(3)解得b=9,c=5,a+b=39,c+d=11,a+c=35,b+d=15,a+b+c+d=50,
${K^2}=\frac{{50×{{({30×6-9×5})}^2}}}{39×11×35×15}=4.046>3.841$,
所以有95%以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)…12元

點(diǎn)評(píng) 本題考查根據(jù)頻率分布直方圖求均值,以及隨機(jī)分布的概率和期望的計(jì)算,考查獨(dú)立性檢驗(yàn)的概率情況,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,已知四棱錐P-ABCD的底面是菱形,對(duì)角線AC、BD交于點(diǎn)O,OA=3,OB=4,OP=6,OP⊥底面ABCD,點(diǎn)滿足$\overrightarrow{PM}$=t$\overrightarrow{PC}$,t∈(0,1).
(1)當(dāng)t=$\frac{1}{2}$時(shí),證明:PA∥平面BDM.
(2)若二面角M-AB-C的大小為$\frac{π}{4}$,問(wèn):符合條件的點(diǎn)M是否存在.若存在,求出t的值.若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知點(diǎn)$P(\sqrt{2},1)$和橢圓C:$\frac{x^2}{4}+\frac{y^2}{2}=1$.
(Ⅰ)設(shè)橢圓的兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2,試求△PF1F2的周長(zhǎng)及橢圓的離心率;
(Ⅱ)若直線l:$\sqrt{2}x-2y+m=0(m≠0)$與橢圓C交于兩個(gè)不同的點(diǎn)A,B,直線PA,PB與x軸分別交于M,N兩點(diǎn),求證:|PM|=|PN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知適合不等式|x2-4x+p|+|x-3|≤5的x的最大值為3.
(1)求p的值;
(2)求x的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)函數(shù)f(x)=ex(1+lnx).
(Ⅰ)求曲線f(x)在(1,f(1))處的切線方程;
(Ⅱ)證明:e2f(x)>e-$\frac{2{e}^{x}}{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.4月23日是世界讀書日,為提高學(xué)生對(duì)讀書的重視,讓更多的人暢游于書海中,從而收獲更多的知識(shí),某高中的校學(xué)生會(huì)開(kāi)展了主題為“讓閱讀成為習(xí)慣,讓思考伴隨人生”的實(shí)踐活動(dòng),校學(xué)生會(huì)實(shí)踐部的同學(xué)隨即抽查了學(xué)校的40名高一學(xué)生,通過(guò)調(diào)查它們是喜愛(ài)讀紙質(zhì)書還是喜愛(ài)讀電子書,來(lái)了解在校高一學(xué)生的讀書習(xí)慣,得到如表列聯(lián)表:
 喜歡讀紙質(zhì)書不喜歡讀紙質(zhì)書合計(jì)
16420
81220
合計(jì)241640
(Ⅰ)根據(jù)如表,能否有99%的把握認(rèn)為是否喜歡讀紙質(zhì)書籍與性別有關(guān)系?
(Ⅱ)從被抽查的16名不喜歡讀紙質(zhì)書籍的學(xué)生中隨機(jī)抽取2名學(xué)生,求抽到男生人數(shù)ξ的分布列及其數(shù)學(xué)期望E(ξ).
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
下列的臨界值表供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.甲、乙兩所學(xué)校高三年級(jí)分別有600人,500人,為了了解兩所學(xué)校全體高三年級(jí)學(xué)生在該地區(qū)五校聯(lián)考的數(shù)學(xué)成績(jī)情況,采用分層抽樣方法從兩所學(xué)校一共抽取了110名學(xué)生的數(shù)學(xué)成績(jī),并作出了頻數(shù)分布統(tǒng)計(jì)表如表:
甲校:
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)34714
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)17x42
乙校:
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)1289
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)1010y4
(1)計(jì)算x,y的值;
(2)若規(guī)定考試成績(jī)?cè)赱120,150]內(nèi)為優(yōu)秀,由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為兩所學(xué)校的數(shù)學(xué)成績(jī)有差異?
甲校乙校總計(jì)
優(yōu)秀
非優(yōu)秀
總計(jì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=lg(ex+$\frac{1}{{e}^{x}}$-a)
(1)若函數(shù)f(x)定義域?yàn)镽,求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)f(x)值域?yàn)镽,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知函數(shù)f(x)=x+$\frac{9}{x+1}$(0≤x≤3),則f(x)的值域?yàn)閇5,9].

查看答案和解析>>

同步練習(xí)冊(cè)答案