【題目】已知拋物線上一點到其焦點下的距離為10.
(1)求拋物線C的方程;
(2)設(shè)過焦點F的的直線與拋物線C交于兩點,且拋物線在兩點處的切線分別交x軸于兩點,求的取值范圍.
【答案】(Ⅰ)(Ⅱ)
【解析】
(Ⅰ)由拋物線的定義,可得到,即可求出,從而得到拋物線的方程;(Ⅱ)直線的斜率一定存在,可設(shè)斜率為,直線為,設(shè),,由可得,,,然后對求導(dǎo),可得到的斜率及方程表達(dá)式,進(jìn)而可表示出,同理可得到的表達(dá)式,然后對化簡可求出范圍。
解:(Ⅰ)已知到焦點的距離為10,則點到準(zhǔn)線的距離為10.
∵拋物線的準(zhǔn)線為,∴,
解得,∴拋物線的方程為.
(Ⅱ)由已知可判斷直線的斜率存在,設(shè)斜率為,因為,則:.
設(shè),,由消去得,,
∴,.
由于拋物線也是函數(shù)的圖象,且,則:.
令,解得,∴,從而.
同理可得,,
∴ .
∵,∴的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為培養(yǎng)學(xué)生的閱讀習(xí)慣,某校開展了為期一年的“弘揚(yáng)傳統(tǒng)文化,閱讀經(jīng)典名著”活動. 活動后,為了解閱讀情況,學(xué)校統(tǒng)計了甲、乙兩組各10名學(xué)生的閱讀量(單位:本),統(tǒng)計結(jié)果用莖葉圖記錄如下,乙組記錄中有一個數(shù)據(jù)模糊,無法確認(rèn),在圖中以a表示.
(Ⅰ)若甲組閱讀量的平均值大于乙組閱讀量的平均值,求圖中a的所有可能取值;
(Ⅱ)將甲、乙兩組中閱讀量超過15本的學(xué)生稱為“閱讀達(dá)人”. 設(shè),現(xiàn)從所有的“閱讀達(dá)人”里任取2人,求至少有1人來自甲組的概率;
(Ⅲ)記甲組閱讀量的方差為. 若在甲組中增加一個閱讀量為10的學(xué)生,并記新得到的甲組閱讀量的方差為,試比較,的大小.(結(jié)論不要求證明)
(注:,其中為數(shù)據(jù)的平均數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司租賃甲、乙兩種設(shè)備生產(chǎn)、兩類產(chǎn)品,甲種設(shè)備每天能生產(chǎn)類產(chǎn)品件和類產(chǎn)品件,乙種設(shè)備每天能生產(chǎn)類產(chǎn)品件和類產(chǎn)品件.已知設(shè)備甲每天的租賃費為元,設(shè)備乙每天的租賃費為元,現(xiàn)該公司至少要生產(chǎn)類產(chǎn)品件,類產(chǎn)品件,求所需租賃費最少為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增長,下表是該地一建設(shè)銀行連續(xù)五年的儲蓄存款(年底余額),如下表1:
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
儲蓄存款y(千億元) | 5 | 6 | 7 | 8 | 10 |
為了研究計算的方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理, 得到下表2:
時間代號t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(Ⅰ)求z關(guān)于t的線性回歸方程;
(Ⅱ)用所求回歸方程預(yù)測到2020年年底,該地儲蓄存款額可達(dá)多少?
(附:對于線性回歸方程,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,點D、E、F分別為線段A1C1、AB、A1A的中點,A1A=AC=BC,∠ACB=90°.求證:
(1)DE∥平面BCC1B1;
(2)EF⊥平面B1CE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)給出下列4個命題:①當(dāng)且僅當(dāng)時,是偶函數(shù);②函數(shù)一定存在零點;③函數(shù)在區(qū)間上單調(diào)遞減;④當(dāng)時,函數(shù)的最小值為,那么所有真命題的序號是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列中,.從數(shù)列中選出項并按原順序組成的新數(shù)列記為,并稱為數(shù)列的項子列.例如數(shù)列、、、為的一個項子列.
(1)試寫出數(shù)列的一個項子列,并使其為等差數(shù)列;
(2)如果為數(shù)列的一個項子列,且為等差數(shù)列,證明:的公差滿足;
(3)如果為數(shù)列的一個項子列,且為等比數(shù)列,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓:(),左、右焦點分別是、且,以為圓心,3為半徑的圓與以為圓心,1為半徑的圓相交于橢圓上的點
(1)求橢圓的方程;
(2)設(shè)橢圓:,為橢圓上任意一點,過點的直線交橢圓于兩點,射線交橢圓于點
①求的值;
②令,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點、的坐標(biāo)分別為和,動點P滿足,設(shè)動點P的軌跡為,以動點P到點距離的最大值為長軸,以點、為左、右焦點的橢圓為,則曲線和曲線的交點到軸的距離為_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com