11.設(shè)函數(shù)f(x)=x2-alnx,a∈R
(1)求函數(shù)f(x)的單調(diào)區(qū)間
(2)若關(guān)于x的方程f(x)=(a-2)x+c有兩個(gè)不相等的實(shí)數(shù)根x1x2,求證:f′($\frac{{x}_{1}{+x}_{2}}{2}$)>a-2.

分析 (1)求出函數(shù)的導(dǎo)數(shù)通過當(dāng)a≤0時(shí),當(dāng)a>0時(shí),判斷導(dǎo)函數(shù)的符號,推出函數(shù)的單調(diào)區(qū)間.
(2)通過x1、x2是方程f(x)=(a-2)x+c的兩個(gè)不等實(shí)根,由(1)知a>0.設(shè)0<x1<x2,把根代入方程,作差,推出a的表達(dá)式,構(gòu)造函數(shù),利用新函數(shù)的導(dǎo)數(shù),通過函數(shù)的單調(diào)性利用分析法證明即可.

解答 解:(1)f′(x)=2x-$\frac{a}{x}$=$\frac{{2x}^{2}-a}{x}$(x>0).
當(dāng)a≤0時(shí),f′(x)>0,函數(shù)f(x)在(0,+∞)上單調(diào)遞增,函數(shù)f(x)的單調(diào)增區(qū)間為(0,+∞).
當(dāng)a>0時(shí),由f′(x)>0,得x>$\frac{\sqrt{2a}}{2}$;由f′(x)<0,得0<x<$\frac{\sqrt{2a}}{2}$.
所以函數(shù)f(x)的單調(diào)增區(qū)間為($\frac{\sqrt{2a}}{2}$,+∞),單調(diào)減區(qū)間為(0,$\frac{\sqrt{2a}}{2}$).…(4分)
(2)證明:令h(x)=f(x)-(a-2)=c,不妨設(shè)x1、x2是方程g(x)=f(x)-(a-2)x的兩個(gè)不等實(shí)根,
不妨設(shè)0<x1<x2,則${{x}_{1}}^{2}$-(a-2)x1-alnx1=c,${{x}_{2}}^{2}$-(a-2)x2-alnx2=c.
兩式相減得${{x}_{1}}^{2}$-(a-2)x1-alnx1-${{x}_{2}}^{2}$+(a-2)•x2+alnx2=0,
即${{x}_{1}}^{2}$+2x1-${{x}_{2}}^{2}$-2x2=ax1+alnx1-ax2-alnx2=a(x1+lnx1-x2-lnx2).
所以a=$\frac{{{x}_{1}}^{2}+{2x}_{1}{{-x}_{2}}^{2}-{2x}_{2}}{{x}_{1}+l{nx}_{1}{-x}_{2}-l{nx}_{2}}$,因?yàn)閔′($\frac{a}{2}$)=0,
當(dāng)x∈(0,$\frac{a}{2}$)時(shí),h′(x)<0,當(dāng)x∈($\frac{a}{2}$,+∞)時(shí),h′(x)>0,
要證明f′($\frac{{x}_{1}{+x}_{2}}{2}$)>a-2,只需證明h′($\frac{{x}_{1}{+x}_{2}}{2}$)>0即可,
故只要證($\frac{{x}_{1}{+x}_{2}}{2}$)>$\frac{a}{2}$即可,即證明x1+x2>$\frac{{{x}_{1}}^{2}+{2x}_{1}{{-x}_{2}}^{2}-{2x}_{2}}{{x}_{1}+l{nx}_{1}{-x}_{2}-l{nx}_{2}}$,
即證明${{x}_{1}}^{2}$-${{x}_{2}}^{2}$+(x1+x2)(lnx1-lnx2)<${{x}_{1}}^{2}$+2x1-${{x}_{2}}^{2}$-2x2
即證明ln$\frac{{x}_{1}}{{x}_{2}}$<$\frac{{2x}_{1}-{2x}_{2}}{{x}_{1}{+x}_{2}}$.設(shè)t=$\frac{{x}_{1}}{{x}_{2}}$(0<t<1).
令g(t)=lnt-$\frac{2t-2}{t+1}$,則g′(t)=$\frac{1}{t}$-$\frac{4}{{(t+1)}^{2}}$=$\frac{{(t-1)}^{2}}{{t(t+1)}^{2}}$.
因?yàn)閠>0,所以g′(t)≥0,當(dāng)且僅當(dāng)t=1時(shí),g′(t)=0,所以g(t)在(0,+∞)上是增函數(shù).
又g(1)=0,所以當(dāng)t∈(0,1)時(shí),g(t)<0總成立.所以原題得證  …(12分).

點(diǎn)評 本題考查函數(shù)的導(dǎo)數(shù)的綜合應(yīng)用,函數(shù)的單調(diào)性,分類討論思想的應(yīng)用,構(gòu)造法的應(yīng)用,考查分析問題解決問題的能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在直角坐標(biāo)系xOy中,曲線M的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{2}cosθ}\\{y=cos2θ}\end{array}\right.$(θ為參數(shù)),若以該直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線N的極坐標(biāo)方程為:ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$t(其中t為常數(shù)).
(I)若曲線N與曲線M只有一個(gè)公共點(diǎn),求t的取值范圍;
(2)當(dāng)t=-2時(shí),求曲線M上的點(diǎn)與曲線N上點(diǎn)的最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知曲線C的極坐標(biāo)方程是ρ2-4ρcos(θ-$\frac{π}{3}$)-1=0.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=tcosα}\\{y=\sqrt{3}+tsinα}\end{array}\right.$(t為參數(shù)).
(Ⅰ)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)若直線l與曲線C相交于A、B兩點(diǎn),且|AB|=3$\sqrt{2}$,求直線的傾斜角α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△OAB的邊OA,OB上分別有一點(diǎn)P,Q,已知OP:PA=1:2,OQ:QB=3:2,連接AQ,BP,設(shè)它們交于點(diǎn)R,若$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$.
(1)用$\overrightarrow{a}$與$\overrightarrow$表示$\overrightarrow{OR}$;
(2)若|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,$\overrightarrow{a}$與$\overrightarrow$夾角為60°,過R作RH⊥AB交AB于點(diǎn)H,用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{OH}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知集合A={x|x2+x+p=0}.
(Ⅰ)若A=∅,求實(shí)數(shù)p的取值范圍;
(Ⅱ)若A中的元素均為負(fù)數(shù),求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.給出下面四個(gè)命題(其中m,n,l為空間中不同的三條直線,α,β為空間中不同的兩個(gè)平面):
①m∥n,n∥α⇒m∥α
②α⊥β,α∩β=m,l⊥m⇒l⊥β;
③l⊥m,l⊥n,m?α,n?α⇒l⊥α
④m∩n=A,m∥α,m∥β,n∥α,n∥β⇒α∥β.
其中錯(cuò)誤的命題個(gè)數(shù)為( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=2$\sqrt{3}$sinxcosx+2cos2x-1,在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且f(B)=1.
(Ⅰ)求B;
(Ⅱ)若$\overrightarrow{BA}$•$\overrightarrow{BC}$=3,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列說法中,正確的是( 。
A.命題“若x≠2或y≠7,則x+y≠9”的逆命題為真命題
B.命題“若x2=4,則x=2”的否命題是“若x2=4,則x≠2”
C.命題“若x2<1,則-1<x<1”的逆否命題是“若x<-1或x>1,則x2>1”
D.若命題p:?x∈R,x2-x+1>0,q:?x0∈(0,+∞),sinx0>1,則(¬p)∨q為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知二次函數(shù)y=f(x),當(dāng)x=2時(shí),函數(shù)f(x)取最小值-1,且f(1)+f(4)=3.
(1)求f(x)的解析式;
(2)若g(x)=f(x)-kx在區(qū)間(1,4)上無最小值,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案