9.(1)θ是第三象限角,且${sin^4}θ+{cos^4}θ=\frac{5}{9}$,求sin2θ;
(2)化簡$\frac{{\sqrt{1-2sin{{10}°}cos{{10}°}}}}{{sin{{170}°}-\sqrt{1-{{sin}^2}{{170}°}}}}$
(3)已知$sinα+cosα=\frac{1}{5}(0<α<π)$,求$\frac{{sin(α-\frac{π}{4})}}{2sinαcosα}$.

分析 (1)由(sin2θ+cos2θ)2=1,求出2sin2θcos2θ=$\frac{4}{9}$,由此能求出sin2θ.
(2)利用同角三角函數(shù)關(guān)系式化簡求值.
(3)由$sinα+cosα=\frac{1}{5}(0<α<π)$,求出sinα,cosα,由此能求出$\frac{{sin(α-\frac{π}{4})}}{2sinαcosα}$的值.

解答 解:(1)∵θ是第三象限角,且${sin^4}θ+{cos^4}θ=\frac{5}{9}$,
∴sinθ<0,cosθ<0,
(sin2θ+cos2θ)2
=sin4θ+cos4θ+2sin2θcos2θ
=$\frac{5}{9}+2si{n}^{2}θco{s}^{2}θ$=1,
∴2sin2θcos2θ=$\frac{4}{9}$,
sin2θ=2sinθcosθ=2×$\sqrt{\frac{2}{9}}$=$\frac{2\sqrt{2}}{3}$.
(2)$\frac{{\sqrt{1-2sin{{10}°}cos{{10}°}}}}{{sin{{170}°}-\sqrt{1-{{sin}^2}{{170}°}}}}$=$\frac{\sqrt{(sin10°-cos10°)^{2}}}{sin10°-\sqrt{co{s}^{2}10°}}$=$\frac{cos10°-sin10°}{sin10°-cos10°}$=-1.
(3)∵$sinα+cosα=\frac{1}{5}(0<α<π)$,①
∴1+2sinαcosα=$\frac{1}{25}$,∴sinαcosα=-$\frac{12}{25}$,
且sinα>0,cosα<0,②
∴(sinα-cosα)2=1-2sinαcosα=1+$\frac{24}{25}$=$\frac{49}{25}$,
∴sinα-cosα=$\frac{7}{5}$,③
聯(lián)立①②③,得sinα=$\frac{4}{5}$,cosα=-$\frac{3}{5}$,
∴$\frac{{sin(α-\frac{π}{4})}}{2sinαcosα}$=$\frac{sinαcos\frac{π}{4}-cosαsin\frac{π}{4}}{2sinαcosα}$=$\frac{\frac{4}{5}×\frac{\sqrt{2}}{2}+\frac{3}{5}×\frac{\sqrt{2}}{2}}{-\frac{24}{25}}$=-$\frac{35\sqrt{2}}{48}$.

點(diǎn)評 本題考查三角函數(shù)化簡求值,是中檔題,解題時(shí)要認(rèn)真審題,注意同角三角函數(shù)關(guān)系式、正弦函數(shù)加法定理的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知冪函數(shù)f(x)=(m-1)x${\;}^{\frac{1}{2}}$,則下列對f(x)的說法不正確的是( 。
A.?x0∈[0,+∞],使f(x0)>0B.f(x)的圖象過點(diǎn)(1,1)
C.f(x)是增函數(shù)D.?x∈R,f(-x)+f(x)=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,已知扇形的周長為6cm,圓心角為1弧度,求扇形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}{y+x≤1}\\{y-x≤2}\\{y≥0}\end{array}\right.$,則z=x-2y的最小值為( 。
A.-1B.-2C.-$\frac{5}{2}$D.-$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.P是△ABC邊BC的中線AD上的中點(diǎn),AD=4,則$\overrightarrow{PA}•({\overrightarrow{PB}+\overrightarrow{PC}})$的值是-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知全集I=R,集合A={x∈R|$\frac{x+1}{x+3}$≤$\frac{1}{2}$},集合B是不等式2|x+1|<4的解集,求A∩(CIB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知$\overrightarrow a=(cosx,2),\overrightarrow b=(2sinx,3)$,且$\overrightarrow a$與$\overrightarrow b$共線,則sin2x-2cos2x=( 。
A.$\frac{8}{25}$B.$-\frac{8}{25}$C.$\frac{3}{4}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.計(jì)算:(log215-log25)(log32+log92)=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知復(fù)數(shù)z滿足(1+i)z=-1+5i(i為虛數(shù)單位),則|z|=$\sqrt{13}$.

查看答案和解析>>

同步練習(xí)冊答案