分析 分別解出A,B,C,(1)利用集合運算性質可得A∩B;
(2)由A∪C=C,可得A⊆C.即可得出.
解答 解:由合A={x|x2-5x-6<0},集合B={x|6x2-5x+1≥0},集合C={x|(x-m)(m+9-x)>0}.
∴A={x|-1<x<6},$B=\left\{{x\left|{x≥\frac{1}{2}或x≤\frac{1}{3}}\right.}\right\}$,C={x|m<x<m+9}.
(1)$A∩B=\left\{{x\left|{-1<x≤\frac{1}{3}或\frac{1}{2}≤x<6}\right.}\right\}$,
(2)由A∪C=C,可得A⊆C.
即$\left\{{\begin{array}{l}{m+9≥6}\\{m≤-1}\end{array}}\right.$,解得-3≤m≤-1.
點評 本題考查了不等式的解法、集合運算性質,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{3}\sqrt{3}$ | B. | $\frac{4}{3}\sqrt{2}$ | C. | $\frac{4}{3}\sqrt{6}$ | D. | $\frac{2}{3}\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{8}$ | B. | 2 | C. | 6 | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com