分析 由A(1,3),B(a,1),C(-b,0),(a>0,b>0),A,B,C三點共線,可得kAB=kAC,化為3a+2b=1.再利用“乘1法”與基本不等式的性質(zhì)即可得出.
解答 解:∵A(1,3),B(a,1),C(-b,0),(a>0,b>0),A,B,C三點共線,
∴kAB=kAC,$\frac{3-1}{1-a}$=$\frac{3-0}{1+b}$,化為3a+2b=1.
則$\frac{3}{a}$+$\frac{1}$=(3a+2b)$(\frac{3}{a}+\frac{1})$=11+$\frac{6b}{a}+\frac{3a}$≥11+3×2×$\sqrt{\frac{2b}{a}×\frac{a}}$=11+6$\sqrt{2}$,當且僅當a=$\sqrt{2}$b時取等號.
故答案為:11+6$\sqrt{2}$.
點評 本題考查了基本不等式的性質(zhì)、斜率計算公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1-6\sqrt{2}}{10}$ | B. | $\frac{\sqrt{3}+2\sqrt{6}}{10}$ | C. | $\frac{1+6\sqrt{2}}{10}$ | D. | $\frac{\sqrt{3}-2\sqrt{6}}{10}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{4\sqrt{2}}{9}$ | B. | -$\frac{7}{9}$ | C. | $\frac{7}{9}$ | D. | $\frac{4\sqrt{2}}{9}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {0,1,2} | B. | {1,2,3} | C. | {x|x≥1} | D. | {x|x>1} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | $\frac{16}{3}$ | C. | 3或$\frac{16}{3}$ | D. | $\frac{19}{25}$或21 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com