11.定義域在R上的奇函數(shù)f(x),當(dāng)x≥0時,f(x)=$\left\{\begin{array}{l}{log_{\frac{1}{2}}}({x+1}),0≤x<1\\ 1-|{x-3}|,x≥1\end{array}$,則關(guān)于x的方程f(x)-a=0(0<a<1)所有根之和為1-$\sqrt{2}$,則實(shí)數(shù)a的值為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{1}{4}$

分析 由題意,作函數(shù)y=f(x)與y=a的圖象,從而可得x1+x2=-6,x4+x5=6,x3=1-2a,從而解得.

解答 解:由題意,作函數(shù)y=f(x)與y=a的圖象如下,

結(jié)合圖象,
設(shè)函數(shù)F(x)=f(x)-a(0<a<1)的零點(diǎn)分別為
x1,x2,x3,x4,x5
則x1+x2=-6,x4+x5=6,
-log0.5(-x3+1)=a,
x3=1-2a,
故x1+x2+x3+x4+x5=-6+6+1-2a=1-2a,
∵關(guān)于x的方程f(x)-a=0(0<a<1)所有根之和為1-$\sqrt{2}$,
∴a=$\frac{1}{2}$.
故選B.

點(diǎn)評 本題考查了數(shù)形結(jié)合的思想應(yīng)用及函數(shù)的性質(zhì)應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(1)已知f(x)滿足2f(x)+f($\frac{1}{x}$)=3x,求f(x)的解析式.
(2)已知f(x)是一次函數(shù),且滿足3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.等差數(shù)列{an}的前n項(xiàng)和為Sn,且a1<0,若存在自然數(shù)m≥3,使得am=Sm,則當(dāng)n>m時,Sn與an的大小關(guān)系是(  )
A.Sn<anB.Sn≤anC.Sn>anD.大小不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,某糧倉是由圓柱和圓錐構(gòu)成(糧倉的底部位于地面上),圓柱的底面直徑與高都等于h米,圓錐的高為$\frac{1}{2}$h米.
(1)求這個糧倉的容積;
(2)求制作這樣一個糧倉的用料面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若$tan({α+\frac{π}{4}})=-3$,則cos2α+2sin2α=( 。
A.$\frac{9}{5}$B.1C.$-\frac{3}{5}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知a>0且b>0,函數(shù)g(x)=2x,且g(a)•g(b)=2,則ab的最大值是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若x,y滿足約束條件$\left\{\begin{array}{l}y≥0\\ x-y+3≥0\\ kx-y+3≥0\end{array}\right.$,且z=2x-y的最大值4,則實(shí)數(shù)k的值為$-\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在平面直角坐標(biāo)系中,已知圓O:x2+y2=4與直線l:x=4,A,B是圓O與x軸的交點(diǎn),P是l上的動點(diǎn).
(1)若從P到圓O的切線長為$2\sqrt{3}$,求點(diǎn)P的坐標(biāo);
(2)若直線PA,PB與圓O的另一個交點(diǎn)分別為M,N,求證:直線MN經(jīng)過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在△ABC中,A=60°,a=6$\sqrt{3}$,則$\frac{a+b+c}{sinA+sinB+sinC}$=12.

查看答案和解析>>

同步練習(xí)冊答案