分析 作出不等式組對應(yīng)的平面區(qū)域,根據(jù)目標是的最小值建立不等式關(guān)系進行求解即可.
解答 解:由z=2x-y得y=2x-z,
若z=2x-y的最大值4,即2x-y≤4,
先作出不等式組$\left\{\begin{array}{l}{y≥0}\\{x-y+3≥0}\end{array}\right.$的區(qū)域,
然后作出直線2x-y=4,
由$\left\{\begin{array}{l}{y=0}\\{2x-y=4}\end{array}\right.$得$\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$,即A(2,0),
此時A也在直線kx-y+3=0上,
則2k=-3,即k=-$\frac{3}{2}$,
故答案為:$-\frac{3}{2}$.
點評 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃問題中的基本方法.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{2}}}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | $10+2\sqrt{3}$ | C. | $10+2\sqrt{5}$ | D. | 12 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com