1.(1)已知f(x)滿足2f(x)+f($\frac{1}{x}$)=3x,求f(x)的解析式.
(2)已知f(x)是一次函數(shù),且滿足3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式.

分析 (1)構(gòu)造方程組法,可得f(x)的解析式.
(2)已知f(x)是一次函數(shù),利用待定系數(shù)法求解即可.

解答 解:(1)∵2f(x)+f($\frac{1}{x}$)=3x,…①
把①中的x換成$\frac{1}{x}$,得2f($\frac{1}{x}$)+f(x)=$\frac{3}{x}$,…②
①×2-②得3f(x)=6x-$\frac{3}{x}$,
∴f(x)=2x-$\frac{1}{x}$(x≠0).
(2)f(x)是一次函數(shù),設(shè)f(x)=ax+b(a≠0),
則3f(x+1)-2f(x-1)=3ax+3a+3b-2ax+2a-2b=ax+5a+b,
即ax+5a+b=2x+17不論x為何值都成立,
∴$\left\{\begin{array}{l}a=2\\ b+5a=17\end{array}$解得$\left\{\begin{array}{l}a=2\\ b=7\end{array}$
∴f(x)的解析式f(x)=2x+7.

點評 本題考查了利用構(gòu)造方程組法,待定系數(shù)法求解函數(shù)解析式的問題,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知各項均為正數(shù)的數(shù)列{an}滿足an+12-an+1an-2an2=0,n∈N*,且a3+2是a2,a4的等差中項.
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{bn}滿足bn=$\frac{n}{2}$•an,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)復(fù)數(shù)z滿足i3=z(1-i)(i為虛數(shù)單位),則復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知a=log0.53,b=20.7,c=0.90.8,則a、b、c的大小關(guān)系是( 。
A.c<b<aB.a<c<bC.a<b<cD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知f(x)是定義在區(qū)間(0,+∞)上的函數(shù),其導(dǎo)函數(shù)為f'(x),且不等式xf'(x)<2f(x)恒成立,則( 。
A.4f(1)<f(2)B.4f(1)>f(2)C.f(1)<4f(2)D.f(1)<2f'(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合A={x|-2≤x≤3},B={x|x-2>0},則∁R(A∩B)=( 。
A.{x|x≤2或x>3}B.{x|x≤-2或x>3}C.{x|x<2或x≥3}D.{x|x<-2或x≥3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.?dāng)?shù)列{an}中,如果an=49-2n,則Sn取最大值時,n等于( 。
A.23B.24C.25D.26

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)是定義在R上的奇函數(shù),且在(0,+∞)上單調(diào)遞增,若f(-1)=0,則不等式f(2x-1)>0解集為( 。
A.$({0,\frac{1}{2}})∪({1,+∞})$B.$({-∞,\frac{1}{2}})∪({1,+∞})$C.(0,1)D.$({0,\frac{1}{2}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.定義域在R上的奇函數(shù)f(x),當(dāng)x≥0時,f(x)=$\left\{\begin{array}{l}{log_{\frac{1}{2}}}({x+1}),0≤x<1\\ 1-|{x-3}|,x≥1\end{array}$,則關(guān)于x的方程f(x)-a=0(0<a<1)所有根之和為1-$\sqrt{2}$,則實數(shù)a的值為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{1}{4}$

查看答案和解析>>

同步練習(xí)冊答案