設(shè)實(shí)數(shù)x,y滿足條件
3x+y-5≤0
x+2y-5≤0
x≥0,y≥0
,若目標(biāo)函數(shù)z=ax+y僅在點(diǎn)P(1,2)處取得最大值,則實(shí)數(shù)a的取值范圍是
 
分析:作出不等式對(duì)應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí),確定目標(biāo)取最優(yōu)解的條件,即可求出a的取值范圍.
解答:解:作出不等式對(duì)應(yīng)的平面區(qū)域,精英家教網(wǎng)
由z=ax+y得y=-ax+z,
要使目標(biāo)函數(shù)z=ax+y僅在點(diǎn)P(1,2)處取得最大值,
則陰影部分區(qū)域在直線y=-ax+z的下方,
∴-a<0,
即a>0,且目標(biāo)函數(shù)處在直線3x+y-5=0和x+2y-5=0之間,
即目標(biāo)函數(shù)的斜率k,滿足-3<-a<-
1
2
,
1
2
<a<3
,
故答案為:
1
2
<a<3
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.根據(jù)條件目標(biāo)函數(shù)z=ax+y僅在點(diǎn)P(1,2)處取得最大值,確定直線的位置是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實(shí)數(shù)x,y滿足條件
x≥0
x≤y
x+2y-4≤0
,則z=2x+y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實(shí)數(shù)x、y滿足條件
x+y≤3
y≤x-1
y≥0
,則
y
x
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實(shí)數(shù)x,y滿足條件
1≤lg(xy2)≤2
-1≤lg
x2
y
≤2
,則lg
x3
y4
的取值范圍為
[-4,3]
[-4,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•閘北區(qū)二模)設(shè)實(shí)數(shù)x,y滿足條件
x≥0
x≤y
x+2y≤3
則z=2x-y的最大值是
1
1

查看答案和解析>>

同步練習(xí)冊(cè)答案