【題目】某電視臺“挑戰(zhàn)主持人”節(jié)目的挑戰(zhàn)者闖第一關(guān)需要回答三個問題,其中前兩個問題回答正確各得分,回答不正確得分,第三個問題回答正確得分,回答不正確得分.如果一個挑戰(zhàn)者回答前兩個問題正確的概率都是,回答第三個問題正確的概率為,且各題回答正確與否相互之間沒有影響.若這位挑戰(zhàn)者回答這三個問題總分不低于分就算闖關(guān)成功.

(Ⅰ)求至少回答對一個問題的概率;

(Ⅱ)求這位挑戰(zhàn)者回答這三個問題的總得分X的分布列;

(Ⅲ)求這位挑戰(zhàn)者闖關(guān)成功的概率.

【答案】(Ⅰ);(Ⅱ)見解析;(Ⅲ).

【解析】試題分析:

Ⅰ)由題意結(jié)合對立事件概率公式可得至少回答對一個問題的概率為.

Ⅱ)這位挑戰(zhàn)者回答這三個問題的總得分的所有可能取值為.計算各個分值相應(yīng)的概率值即可求得總得分X的分布列;

結(jié)合()中計算得出的概率值可得這位挑戰(zhàn)者闖關(guān)成功的概率值為.

試題解析:

Ⅰ)設(shè)至少回答對一個問題為事件,.

Ⅱ)這位挑戰(zhàn)者回答這三個問題的總得分的所有可能取值為.

根據(jù)題意,,

,

,

,

,

.

隨機(jī)變量的分布列是:

Ⅲ)設(shè)這位挑戰(zhàn)者闖關(guān)成功為事件,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

)討論的單調(diào)性;

)若恒成立,證明:當(dāng)時,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)若函數(shù)上為減函數(shù),求實數(shù)的最小值;

2)若存在,使成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}滿足 ,Sn是{an}的前n項和,則S40=(
A.880
B.900
C.440
D.450

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位從一所學(xué)校招收某類特殊人才,對位已經(jīng)選拔入圍的學(xué)生進(jìn)行運動協(xié)調(diào)能力和邏輯思維能力的測試,其測試結(jié)果如下表:

例如,表中運動協(xié)調(diào)能力良好且邏輯思維能力一般的學(xué)生有人.由于部分?jǐn)?shù)據(jù)丟失,只知道從這位參加測試的學(xué)生中隨機(jī)抽取一位,抽到運動協(xié)調(diào)能力或邏輯思維能力優(yōu)秀的學(xué)生的概率為.

(Ⅰ)求的值;

(Ⅱ)從參加測試的位學(xué)生中任意抽取位,求其中至少有一位運動協(xié)調(diào)能力或邏輯思維能力優(yōu)秀的學(xué)生的概率;

(III)從參加測試的位學(xué)生中任意抽取位,設(shè)運動協(xié)調(diào)能力或邏輯思維能力優(yōu)秀的學(xué)生人數(shù)為,求隨機(jī)變量的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 為圓的直徑,在圓 ,矩形所在的平面和圓所在的平面互相垂直,.

1)求證:平面平面;

2)求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤ ),其圖象與直線y=﹣1相鄰兩個交點的距離為π.若f(x)>1對任意x∈(﹣ , )恒成立,則φ的取值范圍是(
A.[ ]
B.[ , ]
C.[ , ]
D.( , ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】利用秦九韶算法判斷方程x5+x3+x2-1=0[0,2]上是否存在實根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解學(xué)生對消防知識的了解情況,從高一年級和高二年級各選取100名同學(xué)進(jìn)行消防知識競賽.下圖(1)和下圖(2)分別是對高一年級和高二年級參加競賽的學(xué)生成績按, , 分組,得到的頻率分布直方圖.

(1)請計算高一年級和高二年級成績小于60分的人數(shù);

(2)完成下面列聯(lián)表,并回答:有多大的把握可以認(rèn)為“學(xué)生所在的年級與消防常識的了解存在相關(guān)性”?

附:臨界值表及參考公式: .

查看答案和解析>>

同步練習(xí)冊答案