【題目】已知函數(shù).
(1)當時,求的單調(diào)區(qū)間.
(2)設(shè)直線是曲線的切線,若的斜率存在最小值-2,求的值,并求取得最小斜率時切線的方程.
(3)已知分別在,處取得極值,求證:.
【答案】(1)單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;(2),;(3)證明見解析.
【解析】
(1)由的正負可確定的單調(diào)區(qū)間;
(2)利用基本不等式可求得時,取得最小值,由導(dǎo)數(shù)的幾何意義可知,從而求得,求得切點坐標后,可得到切線方程;
(3)由極值點的定義可知是的兩個不等正根,由判別式大于零得到的取值范圍,同時得到韋達定理的形式;化簡為,結(jié)合的范圍可證得結(jié)論.
(1)由題意得:的定義域為,
當時,,
,
當和時,;當時,,
的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為.
(2),所以(當且僅當,即時取等號),
切線的斜率存在最小值,,解得:,
,即切點為,
從而切線方程,即:.
(3),
分別在,處取得極值,
,是方程,即的兩個不等正根.
則,解得:,且,.
,
,,
即不等式成立.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形中,,,點為線段上一動點,現(xiàn)將沿折起,使點在面內(nèi)的射影在直線上,當點從運動到,則點所形成軌跡的長度為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形為平行四邊形,,平面,,,,.
(1)若是線段的中點,求證:平面;
(2)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(x>0).
(1)當0<a<b,且f(a)=f(b)時,求證:ab>1;
(2)是否存在實數(shù)a,b(a<b),使得函數(shù)y=f(x)的定義域、值域都是[a,b],若存在,則求出a,b的值,若不存在,請說明理由.
(3)若存在實數(shù)a,b(a<b),使得函數(shù)y=f(x)的定義域為[a,b]時,值域為[ma,mb](m≠0),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市計劃按月訂購一種酸奶,每天進貨量相同,已知每售出一箱酸奶的利潤為50元,當天未售出的酸奶降價處理,以每箱虧損10元的價格全部處理完.若供不應(yīng)求,可從其它商店調(diào)撥,每銷售1箱可獲利30元.假設(shè)該超市每天的進貨量為14箱,超市的日利潤為y元.為確定以后的訂購計劃,統(tǒng)計了最近50天銷售該酸奶的市場日需求量,其頻率分布表如圖所示.
(1)求的值;
(2)求y關(guān)于日需求量的函數(shù)表達式;
(3)以50天記錄的酸奶需求量的頻率作為酸奶需求量發(fā)生的概率,估計日利潤在區(qū)間[580,760]內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點,圓:與軸的正半軸的交點是,過點的直線與圓交于不同的兩點.
(1)若直線與軸交于,且,求直線的方程;
(2)設(shè)直線,的斜率分別是,,求的值;
(3)設(shè)的中點為,點,若,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體中,E是棱的中點,F是側(cè)面內(nèi)的動點,且與平面的垂線垂直,如圖所示,下列說法不正確的是( )
A.點F的軌跡是一條線段B.與BE是異面直線
C.與不可能平行D.三棱錐的體積為定值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠家具車間造A、B型兩類桌子,每張桌子需木工和漆工兩道工序完成.已知木工做一張A、B型桌子分別需要1小時和2小時,漆工油漆一張A、B型桌子分別需要3小時和1小時;又知木工、漆工每天工作分別不得超過8小時和9小時,而工廠造一張A、B型桌子分別獲利潤2千元和3千元,試問工廠每天應(yīng)生產(chǎn)A、B型桌子各多少張,才能獲得利潤最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com