1400°=
 
弧度.
考點:弧度與角度的互化
專題:三角函數(shù)的求值
分析:利用1°=
π
180
弧度
即可得出.
解答: 解:1400°=1400×
π
180
弧度=
70π
9
弧度.
故答案為:
70π
9
點評:本題考查了角度與弧度的互化,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知平面α⊥平面β,α∩β=l,點A∈α,A∉l,直線AB∥l,直線AC⊥l,直線m∥α,m∥β,則下列四種位置關系中,不一定成立的是( 。
A、AB∥mB、AC⊥m
C、AC⊥βD、AB∥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a、b、c分別為內角A、B、C的對邊,已知a=
2
bsin(C+
π
4
).
(1)若△ABC的外接圓半徑R=2
2
,求b;
(2)若△ABC的面積為
2
,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式組
y≤0
y≥x
x≥-1
表示的平面區(qū)域的面積為(  )
A、
1
2
B、
1
4
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正切函數(shù)y=tanx的圖象關于點M(θ,0)對稱,則cosθ=( 。
A、-1或0B、1或0
C、-1或0或1D、1或-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

把下列命題改寫成“若p,則q”的形式,并判斷它們的真假:
(1)等腰三角形兩腰的中線相等;
(2)偶函數(shù)的圖象關于y軸對稱;
(3)垂直于同一個平面的兩個平面平行.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=lg(x-1)+
1
2-x
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在三棱柱PBC-QAD中,側面ABCD為矩形,PA⊥CD
(1)求證:平面PAD⊥平面PDC;
(2)若BC=
6
,PB=
2
,PC=2,AB=
6
3
,求平面PAB與平面平PBC夾角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log
1
2
(x2-mx-m),
(1)若m=1,求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)的值域為R,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案