不等式組
y≤0
y≥x
x≥-1
表示的平面區(qū)域的面積為(  )
A、
1
2
B、
1
4
C、1
D、2
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:數(shù)形結(jié)合
分析:由約束條件作出可行域如圖,聯(lián)立方程組求出B點(diǎn)縱坐標(biāo),由三角形的面積公式得答案.
解答: 解:由不等式組
y≤0
y≥x
x≥-1
作出可行域如圖,

聯(lián)立
x=-1
y=x
,解得B(-1,-1).
∴平面區(qū)域三角形OAB的面積為S=
1
2
×1×1=
1
2

故選:A.
點(diǎn)評(píng):本題考查了簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,AB=2,AC=1,點(diǎn)D為BC中點(diǎn),
AE
=a
AB
,
AF
=b
AC
,且a+b=ab,直線EF與直線AD相交于點(diǎn)P,則
AP
2
+
BC
2
AP
BC
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

五名學(xué)生報(bào)名參加兩項(xiàng)體育比賽,每人限報(bào)一項(xiàng),報(bào)名方法的種數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)為一次函數(shù),且滿足4f(1-x)-2f(x-1)=3x+18,求函數(shù)f(x)在[-1,1]上的最大值,并比較f(2011)與f(2012)的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)是定義在R上周期為2的函數(shù),在區(qū)間[-1,1]時(shí),有f(x)=
ax+1,-1≤x<0
bx+2
x+1
,0≤x≤1
,其中a,b∈R,若f(
1
2
)=f(
3
2
)
,則a+3b的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(sinx,cosx),
b
=(6sinx+cosx,7sinx-2cosx).設(shè)函數(shù)f(x)=
a
b

(Ⅰ)求函數(shù)f(x)的最大值單遞增區(qū)間;
(Ⅱ)在角A為銳角的△ABC中,角A、B、C的對(duì)邊分別為a、b、c,f(A)=6,且△ABC的面積為3,b+c=2+3
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1400°=
 
弧度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙、丙3人站到共有5級(jí)的臺(tái)階上,若每級(jí)臺(tái)階最多站2人,同一級(jí)臺(tái)階上的人不區(qū)分站的位置,則不同的站法種數(shù)有
 
種.(用數(shù)字作答.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m>n,a>b>0,比較ambn與anbm的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案