A. | 40 | B. | 20 | C. | 80 | D. | 10 |
分析 由圓的方程找出圓心坐標(biāo)和半徑r,連接圓心與點(1,0),利用垂徑定理的逆定理最長的弦為過(1,0)的直徑,最短的弦為與直徑垂直的弦,由圓心與(1,0)的距離d,即弦心距及圓的半徑r,勾股定理及垂徑定理求出最短的弦長,再由直徑與最短的弦長垂直,利用直徑與最短弦長乘積的一半即可求出四邊形ABCD的面積.
解答 解:由圓的方程(x-1)2+(y-3)2=25,得到圓心坐標(biāo)為(1,3),半徑r=5,
∵過(1,0)最長的弦為直徑,即AC=10,且(1,0)與(1,3)的距離d=3,
∴最短的弦長BD=2$\sqrt{25-9}$=8,
又AC⊥BD,
則四邊形ABCD的面積S=$\frac{1}{2}$×10×8=40.
故選A.
點評 此題考查了直線與圓相交的性質(zhì),涉及的知識有:圓的標(biāo)準(zhǔn)方程,兩點間的距離公式,垂徑定理,勾股定理,以及對角線垂直的四邊形面積求法,其中根據(jù)題意得出最長的弦長與最短的弦長是解本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,0)∪(2,+∞) | B. | (-∞,-2)∪(0,2) | C. | (-∞,-2)∪(2,+∞) | D. | (-2,0)∪(0,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=x2-x | B. | f(x)=$\frac{1}{x}$+x | C. | f(x)=2x+$\frac{1}{{2}^{x}}$ | D. | f(x)=x|x| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2,68] | B. | [4,68] | C. | [2,2$\sqrt{17}$] | D. | [$\sqrt{2}$,2$\sqrt{17}$] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com