考點:三角函數(shù)中的恒等變換應(yīng)用,三角函數(shù)的周期性及其求法
專題:三角函數(shù)的圖像與性質(zhì),不等式的解法及應(yīng)用
分析:(1)化簡可得f(x)=2sin(2x+
)-
,易得值域和最小正周期;
(2)由x∈[0,
]可得sin(2x+
)∈[0,1],進而可得f(x)+
=2sin(2x+
)∈[0,2],由題意可得m的不等式組,解之可得.
解答:
解:(1)f(x)=2cos(x+
)[sin(x+
)-
cos(x+
)]
=2cos(x+
)sin(x+
)-2cos(x+
)×
cos(x+
)]
=sin(2x+
)-2
cos
2(x+
)
=sin(2x+
)-
cos(2x+
)-
=2sin(2x+
)-
,
∵sin(2x+
)∈[-1,1],
∴f(x)=2sin(2x+
)-
∈[-2-
,2-
],
∴最小正周期T=
=π.
(2)當x∈[0,
]時,2x+
∈[
,π],
∴sin(2x+
)∈[0,1]
∴f(x)+
=2sin(2x+
)∈[0,2].
由m[f(x)+
]+2=0知m≠0,
∴f(x)+
=-
,即0≤-
≤2,
解得m≤-1.即實數(shù)m的取值范圍是[-∞,-1].
點評:本題考查三角函數(shù)的化簡,涉及三角函數(shù)的周期性和值域,屬于基本知識的考查.