已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),過焦點(diǎn)垂直于長軸的直線被橢圓截得的弦長為
7
2
,橢圓C的離心率為
3
4

(1)求橢圓C的方程;
(2)若P為橢圓C上的動點(diǎn),M為過P且垂直于x軸的直線上的點(diǎn),
|OP|
OM
=λ,求點(diǎn)M的軌跡方程,并說明軌跡是什么曲線.
考點(diǎn):橢圓的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:(1)由已知條件條件,利用橢圓性質(zhì),列出方程求出a,b值,問題得以解決.
(2)設(shè)M(x,y),根據(jù)條件列出關(guān)于λ的方程(16λ2-9)x2+16λ2y2=448,然后再按照,線段,圓、橢圓、雙曲線、拋物線的方程討論.
解答: 解:(1)∵過焦點(diǎn)垂直于長軸的直線被橢圓截得的弦長為
7
2
,橢圓C的離心率為
3
4

c
a
=
3
4
b2
a
=
7
2

解得a=8,b=2
7
,
∴橢圓C的方程為:
 x2
64
+
y2
28
=1

(2)設(shè)M(x,y),其中x∈[-8,8].
|OP|2
|0M|2
=λ2
,及點(diǎn)P在橢圓C上,可得
9x2+448
16(x2+y2)
=λ2
,
整理得(16λ2-9)x2+16λ2y2=448,其中x∈[-8,8].
①當(dāng)λ=
3
4
時(shí),化簡得9y2=448.
所以點(diǎn)M的軌跡方程為y=±
8
7
3
(-8≤x≤8),軌跡是兩條平行于x軸的線段.
②當(dāng)λ≠
3
4
時(shí),方程變形為:
x2
448
16λ2-9
+
y2
448
16λ2
=1
,
當(dāng)0<λ<
3
4
時(shí),點(diǎn)M的軌跡為中心在原點(diǎn)、實(shí)軸在y軸上的雙曲線滿足-8≤x≤8的部分;
當(dāng)
3
4
<λ<1時(shí),點(diǎn)M的軌跡為中心在原點(diǎn)、長軸在x軸上的橢圓滿足-8≤x≤8的部分;
當(dāng)λ≥1時(shí),點(diǎn)M的軌跡為中心在原點(diǎn)、長軸在x軸上的橢圓.
點(diǎn)評:本題主要考查圓錐曲線的定義和性質(zhì)及其方程.考查分類討論思想,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+2,x≤0
lnx,x>0
,若函數(shù)y=|f(x)|-k(x+e2)的零點(diǎn)恰有四個(gè),則實(shí)數(shù)k的值為(  )
A、e
B、
1
e
C、e2
D、
1
e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司為了實(shí)現(xiàn)2015年1000萬元利潤的目標(biāo),準(zhǔn)備制定一個(gè)激勵(lì)銷售人員的獎(jiǎng)勵(lì)方案:銷售利潤達(dá)到10萬元時(shí),按銷售利潤進(jìn)行獎(jiǎng)勵(lì),且獎(jiǎng)金數(shù)額y(單位:萬元)隨銷售利潤x(單位:萬元)的增加而增加,但獎(jiǎng)金數(shù)額不超過5萬元,同時(shí)獎(jiǎng)金數(shù)額不超過利潤的25%,現(xiàn)有三個(gè)獎(jiǎng)勵(lì)模型:y1=0.025x,y2=1.003x,y3=log7x+1,問其中是否有模型能完全符合公司的要求?說明理由.(參考數(shù)據(jù):1.003600≈6,74=2401)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-ax+1.
(Ⅰ)若曲線y=f(x)在點(diǎn)A(1,f(1))處的切線l與直線4x+3y-3=0垂直,求實(shí)數(shù)a的值;
(Ⅱ)若f(x)≤0恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)證明:ln(n+1)>
1
2
+
1
3
+…+
1
n+1
(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|2x-1|+|ax-3|,x∈R
(Ⅰ)若a=1時(shí),解不等式f(x)≤5;
(Ⅱ)若a=2時(shí),g(x)=
1
f(x)+m
的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinx(x>0),g(x)=x(x>0).
(Ⅰ)當(dāng)x∈(0,
π
2
)
時(shí),求證:f(x)<g(x);
(Ⅱ)求證:g(x)-f(x)<
1
6
x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知AB=2c(2c為常數(shù)且c>0).以AB為直徑的圓有一內(nèi)接梯形ABCD,且AB∥CD.若橢圓以A、B為焦點(diǎn).且過C、D兩點(diǎn),則當(dāng)梯形ABCD的面積最大時(shí),橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3+2
3
sinx•cosx+2cosx2
(1)若f(α)=5,求tanα的值;
(2)設(shè)△ABC的三個(gè)內(nèi)角A,B,C所對的邊分別是a,b,c,且(2a-c)•cosB-b•cosC=0,求函數(shù)f(x)在(0,B]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

式子log3
427
3
的值為
 

查看答案和解析>>

同步練習(xí)冊答案