精英家教網 > 高中數學 > 題目詳情
(本小題滿分12分)
已知拋物線C的頂點在原點,焦點在x軸上,且拋物線上有一點(4,)到焦點的距離為5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)若拋物線C與直線相交于不同的兩點A、B,求證:
解:(Ⅰ)由題意設拋物線方程為,其準線方程為,…2分
(4,)到焦點的距離等于A到其準線的距離, 
∴拋物線C的方程為  .             ………………………4分
(Ⅱ)由,消去,得 (*) ……………………6分
∵直線與拋物線相交于不同兩點A、B,設,則有
  ,則………………………8分
因為 ………9分
由方程(*)及韋達定理代入上式得………11分
所以,即            ……………………12分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)
動點與點的距離和它到直線的距離相等,記點的軌跡為曲線.圓
的圓心是曲線上的動點, 圓軸交于兩點,且.
(1)求曲線的方程;
(2)設點2,若點到點的最短距離為,試判斷直線與圓的位置關系,
并說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

是曲線上的點,,則
(    )
A.小于10B.大于10C.不大于10D.不小于10

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題


(本小題滿分10分)
已知動圓過點且與直線相切.

(1)求點的軌跡的方程;
(2)過點作一條直線交軌跡兩點,軌跡兩點處的切線相交于點為線段的中點,求證:軸.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

方程的圖像只可能是下圖中( *** )

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)設A、B分別是軸,軸上的動點,P在直線AB上,且
(1)求點P的軌跡E的方程;
(2)已知E上定點K(-2,0)及動點M、N滿足,試證:直線MN必過軸上的定點。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

過點(1,0)的直線與中心在原點,焦點在x軸上且離心率為的橢圓C相交于A、B兩點,直線y=x過線段AB的中點,同時橢圓C上存在一點與其右焦點關于直線l對稱,試求直線l與橢圓C的方程  

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

點P(6,-4)與圓上任一點連線的中點軌跡方程是
A.B.
C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(12分)已知點M與兩個定點O(0,0),A(3,0)的距離的比為求點M的軌跡方程。

查看答案和解析>>

同步練習冊答案