(本小題滿分10分)
已知動圓
過點
且與直線
相切.
(1)求點
的軌跡
的方程;
(2)過點
作一條直線交軌跡
于
兩點,軌跡
在
兩點處的切線相交于點
,
為線段
的中點,求證:
軸.
(1)根據(jù)拋物線的定義,可得動圓圓心
的軌跡C的方程為
…………4分
證明:設(shè)
, ∵
, ∴
,∴
的斜率分別
為
,故
的方程為
,
的方程為
…7分
即
,兩式相減,得
,又
,
∴
的橫坐標(biāo)相等,于是
………………10分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)
平面直角坐標(biāo)系中,已知直線
:
,定點
,動點
到直線
的距離是到定點
的距離的2倍.
(1)求動點
的軌跡
的方程;
(2)若
為軌跡
上的點,以
為圓心,
長為半徑作圓
,若過點
可作圓
的兩條切線
,
(
,
為切點),求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
.設(shè)
,
分別為具有公共焦點
與
的橢圓和雙曲線的離心率,
為兩曲線的一個公共點,且滿足
,則
的值為
A. | B.1 | C.2 | D.不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知拋物線C的頂點在原點,焦點在
x軸上,且拋物線上有一點
(4,
)到焦點的距離為5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)若拋物線C與直線
相交于不同的兩點A、B,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分14分)
已知點A(2,0),
. P為
上的動點,線段BP上的點M滿足|MP|=|MA|.
(Ⅰ)求點M的軌跡C的方程;
。á颍┻^點B(-2,0)的直線
與軌跡C交于S、T兩點,且
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知平面
∥
,直線l
,點P∈l,平面
、
間的距離為5,則在
內(nèi)到點P的距離為13且到直線l的距離為
的點的軌跡是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知與曲線
、
y軸于
、
為原點。
(1)求證:
;
(2)求線段AB中點的軌跡方程;
(3)求△AOB面積的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知
為橢圓
的兩個焦點,過
的直線交橢圓于A、B兩點,若
,則
=
_______.
查看答案和解析>>