分析 先求出函數(shù)的解析式,再代入計算,即可得出結(jié)論.
解答 解:由題意,-f(x)+g(x)=e-x,
與條件聯(lián)立可得,f(x)=$\frac{1}{2}$(ex-e-x),g(x)=$\frac{1}{2}$(ex+e-x),
∴$\frac{{2}^{n}g(1)g(2)g({2}^{2})…g({2}^{n-1})}{f({2}^{n})}$=$\frac{(e+{e}^{-1})({e}^{2}+{e}^{-2})…({e}^{{2}^{n-1}}+{e}^{-{2}^{n-1}})}{\frac{1}{2}({e}^{{2}^{n}}-{e}^{-{2}^{n}})}$=$\frac{2}{e+{e}^{-1}}$=$\frac{2e}{{e}^{2}+1}$.
故答案為:$\frac{2e}{{e}^{2}+1}$.
點評 本題考查函數(shù)的奇偶性,考查函數(shù)解析式的求解,考查學(xué)生的計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
非讀書迷 | 讀書迷 | 合計 | |
男 | 15 | ||
女 | 45 | ||
合計 |
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 90° | B. | 45° | C. | 60° | D. | 30° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{\sqrt{6}}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{2\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{{{{42}^5}}}$ | B. | $\frac{1}{{{{42}^4}}}$ | C. | $\frac{{A}_{42}^{5}}{4{2}^{5}}$ | D. | $\frac{{P_{42}^4}}{{{{42}^5}}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com