17.如圖是2016年我校在紅歌比賽上,七位評委為某班打出的分?jǐn)?shù)的莖葉統(tǒng)計圖,這組數(shù)據(jù)的中位數(shù)是(  )
A.85B.84C.82D.81

分析 把莖葉圖中的數(shù)據(jù)按從小到大的順序排列,中間的一位數(shù)據(jù)是中位數(shù).

解答 解:根據(jù)莖葉圖中的數(shù)據(jù),按從小到大的順序排列是:
79,81,82,84,85,88,93;
所以,這組數(shù)據(jù)的中位數(shù)是84.
故選:B.

點評 本題考查了利用莖葉圖中的數(shù)據(jù)求中位數(shù)的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖,橢圓的中心在原點,頂點分別是A1,A2,B1,B2,焦點分別為F1,F(xiàn)2,延長B1F2與A2B2交于點P,若∠B1PA2為鈍角,則此橢圓的離心率的取值范圍為($\frac{\sqrt{5}-1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)向量$\overrightarrow{AB}=({1,2cosθ}),\overrightarrow{BC}=({m,-4}),θ∈({-\frac{π}{2},\frac{π}{2}})$.若對任意$m∈[{-1,0}],\overrightarrow{AC}•\overrightarrow{BC}≤10$恒成立,則$sin({θ-\frac{π}{2}})$的取值范圍為$[{-1,-\frac{3}{4}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.下列命題:
①在一個2×2列聯(lián)表中,由計算得k2=6.679,則有99%的把握確認(rèn)這兩個變量間有關(guān)系.
②隨機(jī)變量X服從正態(tài)分布N(1,2),則P(X<0)=P(x>2);
③若二項式${({x+\frac{2}{x^2}})^n}$的展開式中所有項的系數(shù)之和為243,則展開式中x-4的系數(shù)是40
④連擲兩次骰子得到的點數(shù)分別為m,n,記向量$\overrightarrow{a}$=(m,n)與向量$\overrightarrow$=(1,-1)的夾角為θ,則θ∈(0,$\frac{π}{2}$]的概率是$\frac{7}{12}$.
⑤若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,則a1+a2+a3+a4+a5=31;
其中正確命題的序號為①②④⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對照數(shù)據(jù).
x2345
y1.5233.5
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的回歸方程$\widehat{y}$=$\widehat$x+$\widehat{c}$;
(2)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為85噸標(biāo)準(zhǔn)煤.試根據(jù)(2)求出的回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?
參考公式:$\left\{\begin{array}{l}\hat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}\\ \hat a=\overline y-\hat b\overline x\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.對稱軸為坐標(biāo)軸的橢圓與的焦點F1(-$\sqrt{3}$,0),F(xiàn)2($\sqrt{3}$,0),P為橢圓上任意一點,滿足|PF1|+|PF2|=4.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)不過原點O的直線l:y=kx+m與橢圓交于P,Q兩點,滿足直線OP,PQ,OQ的斜率依次成等比數(shù)列,求△OPQ面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.對稱軸為坐標(biāo)軸的橢圓與的焦點F1(-$\sqrt{3}$,0),F(xiàn)2( $\sqrt{3}$,0),P為橢圓上任意一點,滿足|PF1|+|PF2|=4.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)不過原點O的直線l:y=kx+$\frac{1}{2}$與橢圓交于P,Q兩點,滿足直線OP,PQ,OQ的斜率依次成等比數(shù)列,O到直線PQ的距離為$\frac{1}{\sqrt{5}}$,求S△OPQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{3}}{2}$,F(xiàn)1,F(xiàn)2是橢圓C的兩個焦點,P是C上任意一點,且△PF1F2的周長為8+4$\sqrt{3}$.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線l與橢圓相交于不同的兩點A、B,已知點A的坐標(biāo)為(-a,0),點Q(0,-3)在線段AB的垂直平分線上,求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.橢圓$\frac{{x}^{2}}{4}$+y2=1中,以點M(1,$\frac{1}{2}$)為中點的弦所在直線方程是x+2y-2=0.

查看答案和解析>>

同步練習(xí)冊答案