等差數(shù)列{an}的前n項和為Sn,若Sm=Sn(m≠n,m,n∈N*),則Sm+n的值為
 
分析:先設(shè)處Sn的表達式,把m和n代入后兩式想減整理求得a(m+n)+b=0,進而代入到Sm+n=a(m+n)2+b(m+n)=(m+n)[a(m+n)+b]答案可得.
解答:解:數(shù)列{an}成等差數(shù)列的棄要條件是Sn=an2+bn(其中a,b為常數(shù));
故有
Sn=an2+bn
Sm=am2+bm

兩式想減得a(m2-n2)+b(m-n)=0,∵m≠n,
∴a(m+n)+b=0,
∴Sm+n=a(m+n)2+b(m+n)=(m+n)[a(m+n)+b]=0.
故答案為0
點評:本題主要考查了等差數(shù)列的性質(zhì).解題的關(guān)鍵了利用了{an}成等差數(shù)列的棄要條件是Sn=an2+bn.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn,若-a7<a1<-a8,則必定有(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn,且滿足a2=6,S5=50,數(shù)列{bn}的前n項和Tn滿足Tn+
1
2
bn=1

(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求證:數(shù)列{bn}為等比數(shù)列;
(Ⅲ)記cn=
1
4
anbn
,數(shù)列{cn}的前n項和為Rn,若Rn<λ對n∈N*恒成立,求λ的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的前2006項的和S2006=2008,其中所有的偶數(shù)項的和是2,則a1003的值為
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}的前n項和為Sn,a1=1;等比數(shù)列{bn}中,b1=1.若a3+S3=14,b2S2=12
(Ⅰ)求an與bn;
(Ⅱ)設(shè)cn=an+2bn(n∈N*),數(shù)列{cn}的前n項和為Tn.若對一切n∈N*不等式Tn≥λ恒成立,求λ的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn,則a5+a6>0是S8≥S2的( 。
A、充分而不必要條件B、必要而不充分條件C、充分必要條件D、既不充分也不必要條件

查看答案和解析>>

同步練習冊答案