【題目】已知曲線(xiàn)C1的參數(shù)方程為 (t為參數(shù)),以原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C2的極坐標(biāo)方程為 . (I)求曲線(xiàn)C2的直角坐標(biāo)系方程;
(II)設(shè)M1是曲線(xiàn)C1上的點(diǎn),M2是曲線(xiàn)C2上的點(diǎn),求|M1M2|的最小值.

【答案】解:(I)由 可得ρ=x﹣2,∴ρ2=(x﹣2)2 , 即y2=4(x﹣1); (Ⅱ)曲線(xiàn)C1的參數(shù)方程為 (t為參數(shù)),消去t得:2x+y+4=0.
∴曲線(xiàn)C1的直角坐標(biāo)方程為2x+y+4=0.
∵M(jìn)1是曲線(xiàn)C1上的點(diǎn),M2是曲線(xiàn)C2上的點(diǎn),
∴|M1M2|的最小值等于M2到直線(xiàn)2x+y+4=0的距離的最小值.
設(shè)M2(r2﹣1,2r),M2到直線(xiàn)2x+y+4=0的距離為d,
則d= =
∴|M1M2|的最小值為
【解析】(Ⅰ)把 變形,得到ρ=ρcosθ+2,結(jié)合x(chóng)=ρcosθ,y=ρsinθ得答案;(Ⅱ)由 (t為參數(shù)),消去t得到曲線(xiàn)C1的直角坐標(biāo)方程為2x+y+4=0,由M1是曲線(xiàn)C1上的點(diǎn),M2是曲線(xiàn)C2上的點(diǎn),把|M1M2|的最小值轉(zhuǎn)化為M2到直線(xiàn)2x+y+4=0的距離的最小值.設(shè)M2(r2﹣1,2r),然后由點(diǎn)到直線(xiàn)的距離公式結(jié)合配方法求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)寫(xiě)出函數(shù)的解析式;

(2)若直線(xiàn)與曲線(xiàn)有三個(gè)不同的交點(diǎn),求的取值范圍;

(3)若直線(xiàn) 與曲線(xiàn)內(nèi)有交點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|+|x+a|.
(Ⅰ)當(dāng)a=2時(shí),解不等式f(x)>6;
(Ⅱ)若關(guān)于x的不等式f(x)<a2﹣1有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若1

A. logab>logba B. |logab+logba|>2

C. (logba)2<1 D. |logab|+|logba|>|logab+logba|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 若Sm﹣1=﹣4,Sm=0,Sm+2=14(m≥2,且m∈N*).
(1)求m的值;
(2)若數(shù)列{bn}滿(mǎn)足 =logabn(n∈N*),求數(shù)列{(an+6)bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在三角形ABC中,AB<AC,∠BAC=90°,邊AB,AC的長(zhǎng)分別為方程 的兩個(gè)實(shí)數(shù)根,若斜邊BC上有異于端點(diǎn)的E,F(xiàn)兩點(diǎn),且EF=1,∠EAF=θ,則tanθ的取值范圍為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某店銷(xiāo)售進(jìn)價(jià)為2元/件的產(chǎn)品,該店產(chǎn)品每日的銷(xiāo)售量(單位:千件)與銷(xiāo)售價(jià)格(單位:元/件)滿(mǎn)足關(guān)系式,其中.

(1)若產(chǎn)品銷(xiāo)售價(jià)格為4元/件,求該店每日銷(xiāo)售產(chǎn)品所獲得的利潤(rùn);

(2)試確定產(chǎn)品的銷(xiāo)售價(jià)格,使該店每日銷(xiāo)售產(chǎn)品所獲得的利潤(rùn)最大.(保留1位小數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn)

(1)求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;

(2)求過(guò)點(diǎn)的曲線(xiàn)的切線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解甲、乙兩名同學(xué)的數(shù)學(xué)學(xué)習(xí)情況,對(duì)他們的次數(shù)學(xué)測(cè)試成績(jī)(滿(mǎn)分分)進(jìn)行統(tǒng)計(jì),作出如下的莖葉圖,其中處的數(shù)字模糊不清,已知甲同學(xué)成績(jī)的中位數(shù)是,乙同學(xué)成績(jī)的平均分是.

(1)求的值;

(2)現(xiàn)從成績(jī)?cè)?/span>之間的試卷中隨機(jī)抽取兩份進(jìn)行分析,求恰抽到一份甲同學(xué)試卷的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案