13.設(shè)△ABC的三邊長(zhǎng)分別為a,b,c,△ABC的面積為S,則△ABC的內(nèi)切圓半徑r=$\frac{2S}{a+b+c}$,這是平面幾何中的一個(gè)命題,其證明采用“面積法”:S△ABC=S△OAB+S△OAC=$\frac{1}{2}$ar+$\frac{1}{2}$br+$\frac{1}{2}$cr=$\frac{1}{2}$(a+b+c)r.則r=$\frac{2S}{a+b+c}$.
(1)將此結(jié)論類比到空間四面體:設(shè)四面體S-ABC的四個(gè)面的面積分別為S1,S2,S3,S4.體積為V,猜想四面體的內(nèi)切球半徑(用S1,S2,S3,S4,V,表示).
(2)用綜合法證明上述結(jié)論.

分析 (1)根據(jù)平面與空間之間的類比推理,由點(diǎn)類比點(diǎn)或直線,由直線 類比 直線或平面,由內(nèi)切圓類比內(nèi)切球,由平面圖形面積類比立體圖形的體積,結(jié)合求三角形的面積的方法類比求四面體的體積即可,
(2)類似△ABC的內(nèi)切圓半徑r=$\frac{2S}{a+b+c}$的即可證明.

解答 解:(1)設(shè)四面體的內(nèi)切球的球心為O,
則球心O到四個(gè)面的距離都是R,
∴四面體的體積等于以O(shè)為頂點(diǎn),
分別以四個(gè)面為底面的4個(gè)三棱錐體積的和.
則四面體的體積為V=$\frac{1}{3}$(S1+S2+S3+S4)r,
∴r=$\frac{3V}{{S}_{1}+{S}_{2}+{S}_{3}+{S}_{4}}$,
(2)證明:VS-ABC=VO-ABC+VO-SAB+VO-SBC+VO-SAC=$\frac{r}{3}$(S△ABC+S△SAB+V△SBC+VO△SAC),
∴r=$\frac{3V}{{S}_{1}+{S}_{2}+{S}_{3}+{S}_{4}}$

點(diǎn)評(píng) 類比推理是指依據(jù)兩類數(shù)學(xué)對(duì)象的相似性,將已知的一類數(shù)學(xué)對(duì)象的性質(zhì)類比遷移到另一類數(shù)學(xué)對(duì)象上去.一般步驟:①找出兩類事物之間的相似性或者一致性.②用一類事物的性質(zhì)去推測(cè)另一類事物的性質(zhì),得出一個(gè)明確的命題(或猜想).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.命題“?x0>0,使得(x0+1)${e}^{{x}_{0}}$>1”的否定是( 。
A.?x>0,總有(x+1)ex≤1B.?x≤0,總有(x+1)ex≤1
C.?x0≤0,總有(x0+1)${e}^{{x}_{0}}$≤1D.?x0>0,使得(x0+1)${e}^{{x}_{0}}$≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知a,b,c分別為△ABC的內(nèi)角A,B,C所對(duì)的邊,且3a2+3b2-c2=4ab,則△ABC( 。
A.可能為銳角三角形B.一定不是銳角三角形
C.一定為鈍角三角形D.不可能為鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在等差數(shù)列{an}中,若其前13項(xiàng)的和S13=52,則a7為( 。
A.4B.3C.6D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.A、B分別是復(fù)數(shù)z1、z2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn),O是原點(diǎn),若|z1+z2|=|z1-z2|,則三角形AOB一定是( 。
A.等腰三角形B.直角三角形C.等邊三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn.若a1=3,S2=9,則an=3•2n-1;Sn=3•(2n-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知圓C:(x-3)2+(y-t)2=t2(t≠0,t∈R),A(-3,0),B(3,2t),F(xiàn)(2,0).
(1)若過(guò)A傾斜角為60°的直線與圓C相切,求t的值;
(2)過(guò)F且傾斜角不為0的直線l與圓C相切,l與AB交于M,求點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.為了考查某種藥物預(yù)防H7N9禽流感的效果,某研究中心選了100只雞做實(shí)驗(yàn),統(tǒng)計(jì)如下
得禽流感不得禽流感總計(jì)
服藥54550
不服藥143650
總計(jì)1981100
(Ⅰ)能有多大的把握認(rèn)為藥物有效
(Ⅱ)在服藥后得禽流感的雞中,有2只母雞,3只公雞,在這5只雞中隨機(jī)抽取3只再進(jìn)行研究,求至少抽到1只母雞的概率
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
臨界值表
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知集合M={x|x2-4<0},N={x|1≤2x≤8,x∈Z},則N∩M=( 。
A.[0,2)B.{0,1}C.{0,1,2}D.{0,1,3}

查看答案和解析>>

同步練習(xí)冊(cè)答案