15.設(shè)i是虛數(shù)單位,則$\frac{1-i}{1+i}$=-i.

分析 直接由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡$\frac{1-i}{1+i}$得答案.

解答 解:$\frac{1-i}{1+i}$=$\frac{(1-i)^{2}}{(1+i)(1-i)}=\frac{-2i}{2}=-i$,
故答案為:-i.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.下列說法正確的是①③④⑤⑥(填上你認(rèn)為正確的所有命題的序號(hào))
①函數(shù)y=-sin(kπ+x)(k∈Z)是奇函數(shù);
②函數(shù)y=2sin(2x+$\frac{π}{3}$)的圖象關(guān)于點(diǎn)($\frac{π}{12}$,0)對(duì)稱;
③函數(shù)y=2sin(2x+$\frac{π}{3}$)+sin(2x-$\frac{π}{3}$)的最小正周期是π;
④△ABC中,cosA>cosB充要條件是A<B; 
⑤函數(shù)y=cos2x+sinx的最小值是-1.
⑥y=|sin(2x+$\frac{π}{6}$)+1|最小正周期為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.等差數(shù)列{an}中,Sn為其前n項(xiàng)和,已知S2016=2016,且$\frac{{S}_{2016}}{2016}$-$\frac{{S}_{16}}{16}$=2000,則a1等于( 。
A.-2017B.-2016C.-2015D.-2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ax-|x+1|(x∈R).
(1)設(shè)函數(shù)g(x)為定義在R上的奇函數(shù),且當(dāng)x>0時(shí),g(x)=f(x),求g(x)的解析式;
(2)若函數(shù)f(x)有最大值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.(1)若x>-1,求y=$\frac{{{x^2}+7x+10}}{x+1}$的最小值;
(2)若a,b,c都是正數(shù),且a+b+c=1,求證(1-a)(1-b)(1-c)≥8abc.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)F1、F2是橢圓$\frac{x^2}{16}$+$\frac{y^2}{4}$=1的兩焦點(diǎn),P為橢圓上的點(diǎn),若PF1⊥PF2,則△PF1F2的面積為( 。
A.8B.$4\sqrt{2}$C.4D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知雙曲線的漸進(jìn)線方程為y=±2x,且過點(diǎn)(-3,$4\sqrt{2}$).
(1)求雙曲線的方程;
(2)若直線4x-y-6=0與雙曲線相交于A、B兩點(diǎn),求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知點(diǎn)(3,-1)和(-4,-3)在直線3x-2y+a=0的同側(cè),則a的取值范圍是(-∞,-11)∪(6,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.方程的解集為{x|x2-3x+2=0},用列舉法表示為{1,2}.

查看答案和解析>>

同步練習(xí)冊(cè)答案