5.下列說法正確的是①③④⑤⑥(填上你認為正確的所有命題的序號)
①函數(shù)y=-sin(kπ+x)(k∈Z)是奇函數(shù);
②函數(shù)y=2sin(2x+$\frac{π}{3}$)的圖象關(guān)于點($\frac{π}{12}$,0)對稱;
③函數(shù)y=2sin(2x+$\frac{π}{3}$)+sin(2x-$\frac{π}{3}$)的最小正周期是π;
④△ABC中,cosA>cosB充要條件是A<B; 
⑤函數(shù)y=cos2x+sinx的最小值是-1.
⑥y=|sin(2x+$\frac{π}{6}$)+1|最小正周期為$\frac{π}{2}$.

分析 根據(jù)函數(shù)y=Asin(ωx+∅)的圖象特征,正弦函數(shù)的單調(diào)性、對稱性,充分條件、必要條件、充要條件的定義,對各個選項進行判斷,從而得出結(jié)論.

解答 解:由于①函數(shù)y=-sin(kπ+x)(k∈Z),即 y=±sinx,故函數(shù)是奇函數(shù),故①正確.
②由于 函數(shù)y=2sin(2x+$\frac{π}{3}$),當x=$\frac{π}{12}$時,函數(shù)y=2,為最大值,故y=2sin(2x+$\frac{π}{3}$)的圖象關(guān)于直線x=$\frac{π}{12}$對稱,故②不正確.
③由于 函數(shù)y=2sin(2x+$\frac{π}{3}$)+sin(2x-$\frac{π}{3}$)=3sin2xcos$\frac{π}{3}$+cos2xsin$\frac{π}{3}$=$\frac{3}{2}$sin2x+$\frac{\sqrt{3}}{2}$cos2x=$\sqrt{3}$sin(2x+$\frac{π}{6}$),其最小正周期等于π,故③正確.
④△ABC中,由于函數(shù) y=cosx 在(0,π)上是減函數(shù),故cosA>cosB充要條件是A<B,故④正確.
⑤函數(shù)y=cos2+sinx=1-sin2x+sinx=-(sinx-$\frac{1}{2}$)2+$\frac{5}{4}$,故當sinx=-1 時,函數(shù)y=cos2x+sinx 取得最小值-1,故⑤正確.
⑥y=|sin(2x+$\frac{π}{6}$)+1|最小正周期為$\frac{π}{2}$,正確.
故答案為 ①③④⑤⑥.

點評 本題主要考查函數(shù)y=Asin(ωx+∅)的圖象特征,正弦函數(shù)的單調(diào)性、對稱性、周期性,充分條件、必要條件、充要條件的定義,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.△ABC中,角A,B,C所對的邊分別為a,b,c,S表示三角形的面積,若asinA+bsinB=csinC,且S=$\frac{1}{4}({a^2}+{c^2}-{b^2})$,則對△ABC的形狀的精確描述是( 。
A.直角三角形B.等腰三角形
C.等腰或直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=|$\frac{1}{x}$-1|,其中x>0
(1)求f(x)的單調(diào)區(qū)間;
(2)是否存在實數(shù)a,b ( 0<a<b ),使得函數(shù)f(x)的定義域和值域都是[a,b]若存在,請求出a,b的值;若不存在,請說明理由;
(3)若存在實數(shù)a,b ( 0<a<b ),使得函數(shù)f(x)的定義域是[0,b],值域是[ma,mb]( m≠0 ),求實數(shù) m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若函數(shù)f(x)=2•ax-b+1(a>0且a≠1)的圖象經(jīng)過定點(2,3),則b的值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.當a為何值時,函數(shù)y=7x2-(a+13)x+a2-a-2的一個零點在區(qū)間(0,1)上,另一個零點在區(qū)間(1,2)上?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.計算:(0.0081)${\;}^{-\frac{1}{4}}}$-10×0.027${\;}^{\frac{1}{3}}}$+lg$\frac{1}{4}$-lg25(  )
A.-$\frac{10}{3}$B.$\frac{25}{3}$C.-$\frac{5}{3}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)y=-x2+2x+3(0≤x<3)的值域是(0,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知等比數(shù)列{an}單調(diào)遞增,記數(shù)列{an}的前n項之和為Sn,且滿足條件a2=6,S3=26.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=an-2n,求數(shù)列{bn}的前n項之和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)i是虛數(shù)單位,則$\frac{1-i}{1+i}$=-i.

查看答案和解析>>

同步練習(xí)冊答案