長方體ABCD-A1B1C1D1的頂點均在同一個球面上,AB=A1B1=1,BC=,則A,B兩點間的球面距離為   
【答案】分析:考查球面距離的問題,可先利用長方體三邊長求出球半徑,在三角形中求出球心角,再利用球面距離公式得出答案.
解答:解:設(shè)球的球心為O,球的直徑即為長方體的對角線長,
即2R=
∴R=1,
在等腰三角形OAB中,
球心角∠AOB=
∴利用球面距離公式得出:
距離公式=
答案:
點評:本題主要考查球的性質(zhì)、球面距離,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)在長方體ABCD-A1B1C1D1中,AB=BC=2,過A1、C1、B三點的平面截去長方體的一個角后,得到如圖所示的幾何體ABCD-A1C1D1,且這個幾何體的體積為10.
(1)求棱A1A的長;
(2)求點D到平面A1BC1的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,長方體ABCD-A1B1C1D1中,AB=A1A=a,BC=
2
a,M是AD中點,N是B1C1中點.
(1)求證:A1、M、C、N四點共面;
(2)求證:BD1⊥MCNA1;
(3)求證:平面A1MNC⊥平面A1BD1;
(4)求A1B與平面A1MCN所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

長方體ABCD-A1B1C1D1中,AB=3,BC=4,AA1=5 則三棱錐A1-ABC的體積為( 。
A、10B、20C、30D、35

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知多面體ABCD-A1B1C1D1,它是由一個長方體ABCD-A'B'C'D'切割而成,這個長方體的高為b,底面是邊長為a的正方形,其中頂點A1,B1,C1,D1均為原長方體上底面A'B'C'D'各邊的中點.
(1)若多面體面對角線AC,BD交于點O,E為線段AA1的中點,求證:OE∥平面A1C1C;
(2)若a=4,b=2,求該多面體的體積;
(3)當a,b滿足什么條件時AD1⊥DB1,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在長方體ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是側(cè)棱BB1的中點.
(1)求證:A1E⊥平面ADE;
(2)求三棱錐A1-ADE的體積.

查看答案和解析>>

同步練習冊答案