【題目】設(shè)0<a<1,則函數(shù)f(x)loga||( )

A.(,-1)(1,+∞)上單調(diào)遞減,在(1,1)上單調(diào)遞增

B.(,-1)(1,+∞)上單調(diào)遞增,在(1,1)上單調(diào)遞減

C.(,-1)(1,+∞)上單調(diào)遞增,在(1,1)上單調(diào)遞增

D.(,-1)(1,+∞)上單調(diào)遞減,在(1,1)上單調(diào)遞減

【答案】A

【解析】

根據(jù)對(duì)數(shù)函數(shù)的定義域要求,分段討論,由復(fù)合函數(shù)單調(diào)性的判斷方法即可得解.

因?yàn)?/span>,

所以定義域?yàn)?/span>,

當(dāng)時(shí), ,函數(shù)單調(diào)遞增.因?yàn)?/span>,由復(fù)合函數(shù)單調(diào)性可知單調(diào)遞減

當(dāng)時(shí), ,函數(shù)單調(diào)遞減.因?yàn)?/span>,由復(fù)合函數(shù)單調(diào)性可知單調(diào)遞增

當(dāng)時(shí), ,函數(shù)單調(diào)遞增.因?yàn)?/span>,由復(fù)合函數(shù)單調(diào)性可知單調(diào)遞減

綜上可知, 上單調(diào)遞減,上單調(diào)遞增

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從參加某次知識(shí)競(jìng)賽測(cè)試的學(xué)生中隨機(jī)抽出60名學(xué)生,將其成績(jī)(百分制)(均為整數(shù))分成六段,后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:

1)求分?jǐn)?shù)在內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;

2)根據(jù)頻率分布直方圖,從圖中估計(jì)總體的眾數(shù)是多少分?中位數(shù)是多少分?

3)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表,據(jù)此估計(jì)本次考試的平均分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列敘述中正確的是( )

A. ,則的充分條件是

B. ,則的充要條件是

C. 命題的否定是

D. 是等比數(shù)列,則為單調(diào)遞減數(shù)列的充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)excos xx.

(1)求曲線yf(x)在點(diǎn)(0,f(0))處的切線方程;

(2)求函數(shù)f(x)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在圖所示的五面體中,面ABCD為直角梯形,,平面平面ABCD,,是邊長(zhǎng)為2的正三角形.

證明:平面ACF;

若點(diǎn)P在線段EF上,且二面角的余弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)R上的奇函數(shù),且當(dāng)x>0時(shí)f(x)=-x2+2x+2.

(1)f(x)的解析式;

(2)畫出f(x)的圖像,并指出f(x)的單調(diào)區(qū)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形為正方形,四邊形為直角梯形,且, 平面平面,

)求證: 平面

)若二面角為直二面角,

i)求直線與平面所成角的大。

ii)棱上是否存在點(diǎn),使得平面?若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一張矩形白紙ABCD,AB=10,AD=,E,F分別為AD,BC的中點(diǎn),現(xiàn)分別將△ABE,△CDF沿BE,DF折起,且A、C在平面BFDE同側(cè),下列命題正確的是____________(寫出所有正確命題的序號(hào))

①當(dāng)平面ABE∥平面CDF時(shí),AC∥平面BFDE

②當(dāng)平面ABE∥平面CDF時(shí),AE∥CD

③當(dāng)A、C重合于點(diǎn)P時(shí),PG⊥PD

④當(dāng)A、C重合于點(diǎn)P時(shí),三棱錐P-DEF的外接球的表面積為150

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=x2+bx+c,其中b,cR

1)當(dāng)fx)的圖象關(guān)于直線x=1對(duì)稱時(shí),b=______

2)如果fx)在區(qū)間[-1,1]不是單調(diào)函數(shù),證明:對(duì)任意xR,都有fx)>c-1;

3)如果fx)在區(qū)間(0,1)上有兩個(gè)不同的零點(diǎn).求c2+1+bc的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案