12.已知a,b為實數(shù),且$\frac{a+bi}{2-i}$=3+i,則a-b=( 。
A.5B.10C.7D.8

分析 把已知等式變形,然后利用復(fù)數(shù)相等的條件求得a,b的值,則答案可求.

解答 解:由$\frac{a+bi}{2-i}$=3+i,得a+bi=(3+i)(2-i)=7-i,
∴a=7,b=-1,則a-b=8.
故選:D.

點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)相等的條件,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若點P的坐標(biāo)是(5cosθ,4sinθ),圓C的方程為x2+y2=25,則點P與圓C的位置關(guān)系是(  )
A.點P在圓C內(nèi)B.點P在圓C上
C.點P在圓C內(nèi)或圓C上D.點P在圓C上或圓C外

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.用二分法求函數(shù)f(x)=lgx+2x-3的一個零點,其參考數(shù)據(jù)如表:
f(1)=-1f(1.25)=-0.4031f(1.375)=-0.1117
f(1.4375)=0.0326f(1.5)=0.1761f(2)=1.3010
若精確到0.1,則方程lgx+2x-3=0的一個近似解x≈1.4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)$f(x)=\sqrt{2-x}+\frac{3+x}{2x-1}$的定義域為( 。
A.(-∞,2]B.(-∞,$\frac{1}{2}$)∪($\frac{1}{2}$,2]C.($\frac{1}{2}$,2]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若直線y=kx+1(k>0)是曲線$y=\sqrt{x}$的切線,則k=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={x|-1<x≤0},B={a},A∪B=A,則實數(shù)a的取值范圍是( 。
A.[0,1)B.(-1,1)C.(-1,0]D.(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)$f(x)=\left\{\begin{array}{l}|{{{log}_2}x}|,0<x<2\\ sin({\frac{π}{4}x}),2≤x≤10\end{array}\right.$,若存在實數(shù)x1,x2,x3,x4,滿足x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),則$\frac{{({{x_3}-1})({{x_4}-1})}}{{{x_1}{x_2}}}$的取值范圍是(9,21).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(1)某省高中男生身高統(tǒng)計調(diào)查數(shù)據(jù)顯示:全省100000名男生的身高服從正態(tài)分布N(170.5,16)現(xiàn)從該省某校高三年級男生中隨機抽取50名測量身高,測量發(fā)現(xiàn)被測學(xué)生身高全部介于157.5cm和187.5cm之間,將測量結(jié)果按如下方式分成6組:第一組[157.5,162.5]第二組[162.5,167.5],…第6組[182.5,187.5],如圖是按上述分組方法得到的頻率分布直方圖.
(1)求該學(xué)校高三年級男生的平均身高;
(2)求這50名男生身高在177.5cm以上(含177.5cm)的人數(shù);
(3)在這50名男生身高在177.5cm以上含(177.5cm)的人中任意抽取2人,該2人中身高排名(從高到低)在全省前130名的人數(shù)記為ξ,求ξ的數(shù)學(xué)期望.
參考數(shù)據(jù):
若ξ~N(μ,σ2).則P(μ-σ<ξ≤μ+σ)=0.6826,P(μ-3σ<ξ≤μ+3σ)=0.9974.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖所示,點E、F分別為棱長為2$\sqrt{2}$的正方體ABCD-A1B1C1D1的棱AB,C1D1的中點,點P在EF上,過點P作直線l,使得l⊥EF,且l∥平面ACD1,直線l與正方體的表面相交于M、N兩點,當(dāng)點P由E運動到點F時,記EP=x,△EMN的面積為f(x),則y=f(x)的圖象是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案