【題目】△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.已知 bcosA=asinB. (Ⅰ)求A;
(Ⅱ)若a= ,b=2,求△ABC的面積.

【答案】解:(Ⅰ)asinB= bcosA,由正弦定理可得sinAsinB= sinBcosA, ∵B是三角形內(nèi)角,∴sinB≠0,
∴tanA= ,A是三角形內(nèi)角,
∴A=
(Ⅱ)∵a= ,b=2,A=
∴由余弦定理a2=b2+c2﹣2bccosA,可得:7=4+c2﹣2× ,整理可得:c2﹣2c﹣3=0,
解得:c=3或﹣1(舍去),
∴SABC= bcsinA= =
【解析】(Ⅰ)利用正弦定理化簡(jiǎn)已知條件,通過(guò)三角形內(nèi)角求解A的大小即可.(Ⅱ)利用余弦定理可求c的值,通過(guò)三角形面積公式即可得解.
【考點(diǎn)精析】本題主要考查了正弦定理的定義和余弦定理的定義的相關(guān)知識(shí)點(diǎn),需要掌握正弦定理:;余弦定理:;;才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2016高考山東理數(shù)】平面直角坐標(biāo)系中,橢圓C: 的離心率是,拋物線(xiàn)E:的焦點(diǎn)FC的一個(gè)頂點(diǎn).

I)求橢圓C的方程;

II)設(shè)P是E上的動(dòng)點(diǎn),且位于第一象限,E在點(diǎn)P處的切線(xiàn)與C交與不同的兩點(diǎn)A,B,線(xiàn)段AB的中點(diǎn)為D,直線(xiàn)OD與過(guò)P且垂直于x軸的直線(xiàn)交于點(diǎn)M.

i)求證:點(diǎn)M在定直線(xiàn)上;

ii)直線(xiàn)與y軸交于點(diǎn)G,記的面積為,的面積為,求 的最大值及取得最大值時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖半圓柱的底面半徑和高都是1,面是它的軸截面(過(guò)上下底面圓心連線(xiàn)的平面),分別是上下底面半圓周上一點(diǎn).

(1)證明:三棱錐體積,并指出滿(mǎn)足什么條件時(shí)有

(2)求二面角平面角的取值范圍,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的右焦點(diǎn)為,離心率為,過(guò)點(diǎn)且與軸垂直的直線(xiàn)被橢圓截得的線(xiàn)段長(zhǎng)為.

(1)求橢圓的方程;

(2)若上存在兩點(diǎn),橢圓上存在兩個(gè)點(diǎn)滿(mǎn)足: 三點(diǎn)共線(xiàn), 三點(diǎn)共線(xiàn)且,求四邊形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)今,手機(jī)已經(jīng)成為人們不可或缺的交流工具,人們常常把喜歡玩手機(jī)的人冠上了名號(hào)“低頭族”,手機(jī)已經(jīng)嚴(yán)重影響了人們的生活,一媒體為調(diào)查市民對(duì)低頭族的認(rèn)識(shí),從某社區(qū)的500名市民中,隨機(jī)抽取名市民,按年齡情況進(jìn)行統(tǒng)計(jì)的頻率分布表和頻率分布直方圖如圖

(1)求出表中的的值,并補(bǔ)全頻率分布直方圖;

(2)媒體記者為了做好調(diào)查工作,決定從所隨機(jī)抽取的市民中按年齡采用分層抽樣的方法抽取20名接受采訪(fǎng),再?gòu)某槌龅倪@20名中年齡在的選取2名擔(dān)任主要發(fā)言人.記這2名主要發(fā)言人年齡在的人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.且 =(cos(A﹣B),﹣sin(A﹣B)), =(cosB,sinB),若 =﹣ . (Ⅰ)求sin A的值;
(Ⅱ)若a=4 ,b=5,求向量 方向上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)存在與直線(xiàn)平行的切線(xiàn),求實(shí)數(shù)的取值范圍;

(2)設(shè),若有極大值點(diǎn),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且,又?jǐn)?shù)列滿(mǎn)足: .

(1)求數(shù)列的通項(xiàng)公式;

(2)當(dāng)為何值時(shí),數(shù)列是等比數(shù)列?此時(shí)數(shù)列的前項(xiàng)和為,若存在,使m<成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A,B分別是直線(xiàn)y=x和y=-x上的兩個(gè)動(dòng)點(diǎn),線(xiàn)段AB的長(zhǎng)為,D是AB的中點(diǎn).

(1)求動(dòng)點(diǎn)D的軌跡C的方程;

(2)若過(guò)點(diǎn)(1,0)的直線(xiàn)l與曲線(xiàn)C交于不同兩點(diǎn)P、Q,當(dāng)|PQ|=3時(shí),求直線(xiàn)l的方程。

查看答案和解析>>

同步練習(xí)冊(cè)答案