3.已知f(x)=-x2+2x+3,若函數(shù)g(x)=f(x)-mx.若在區(qū)間[-2,2]上是單調(diào)函數(shù),求實數(shù)m的取值范圍{m|m≤-2或m≥6}.

分析 求出g(x)的解析式,根據(jù)二次函數(shù)的性質(zhì)得到關于m的不等式,解出即可.

解答 解:∵f(x)=-x2+2x+3,
∴g(x)=f(x)-mx=-x2+(2-m)x+3,
若g(x)在區(qū)間[-2,2]上是單調(diào)函數(shù),
則$\frac{2-m}{2}$≤-2或$\frac{2-m}{2}$≥2,
解得:m≥6或m≤-2,
故答案為:{m|m≤-2或m≥6}.

點評 本題考查了函數(shù)的單調(diào)性問題,考查二次函數(shù)的性質(zhì),是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.直線$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$ (t為參數(shù))與圓$\left\{\begin{array}{l}{x=4+2cosθ}\\{y=2sinθ}\end{array}\right.$ (θ為參數(shù))相切,則直線的傾斜角為( 。
A.$\frac{π}{6}$或$\frac{5π}{6}$B.$\frac{π}{4}$或$\frac{5π}{6}$C.$\frac{π}{3}$或$\frac{2π}{3}$D.-$\frac{π}{6}$或-$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.甲、乙兩位學生參加數(shù)學競賽培訓.現(xiàn)分別從他們在培訓期間參加的若干次預賽成績中隨機抽取8次,記錄如下:
甲 82 81 79 78 95 88 93 84
乙   92 95 80 75 83 80 90 85
(1)用莖葉圖表示這兩組數(shù)據(jù);若將頻率視為概率,對甲學生在培訓后參加的一次數(shù)學競賽成績進行預測,求甲的成績高于80分的概率;
(2)現(xiàn)要從中選派一人參加數(shù)學競賽,從統(tǒng)計學的角度(在平均數(shù)、方差或標準差中選兩中)考慮,你認為選派哪位學生參加合適?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=-$\sqrt{2}$sin(2x+$\frac{π}{4}$)+6sinxcosx-2cos2x+1.
(1)求f(-$\frac{π}{24}$)的值.
(2)若x∈(0,π)求函數(shù)單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.(1)已知f(x)的定義域為[-2,1],求函數(shù)f(3x-1)的定義域;
(2)已知f(2x+5)的定義域為[-1,4],求函數(shù)f(x)的定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.命題“?x>0,x(x-1)>0”的否定是( 。
A.?x>0,x(x-1)≤0B.?x<0,0≤x≤1C.?x>0,x(x-1)≤0D.?x>0,0≤x≤1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.為了得到函數(shù)y=sinx+cosx的圖象,可以將函數(shù)y=$\sqrt{2}$sin(x-$\frac{π}{4}$)的圖象( 。
A.向左平行移動$\frac{π}{4}$個單位B.向右平行移動$\frac{π}{4}$個單位
C.向左平行移動$\frac{π}{2}$個單位D.向右平行移動$\frac{π}{2}$個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知4an+1-4an-9=0,則數(shù)列{an}是( 。
A.公差為9的等差數(shù)列B.公差為$\frac{9}{4}$的等差數(shù)列
C.公差為4 的等差數(shù)列D.不是等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知不等式組$\left\{\begin{array}{l}x+y≤1\\ x-y≥-1\\ y≥0\end{array}\right.$所表示的平面區(qū)域為D.若目標函數(shù)z=ax-y-2在區(qū)域D上的最大值為2,則實數(shù)a的值為(  )
A.-2B.4C.-2或4D.-4或4

查看答案和解析>>

同步練習冊答案