分析 根據(jù)函數(shù)的解析式和求函數(shù)定義域的法則,列出不等式組求出解集,即可得到答案.
解答 解:要使函數(shù)f(x)=$\frac{1}{\sqrt{2-x}}$+(x-1)0有意義,
則x必須滿足$\left\{\begin{array}{l}{2-x>0}\\{x-1≠0}\end{array}\right.$,
解得x<2且x≠1,
所以函數(shù)f(x)的定義域是{x|x<2且x≠1},
故答案為:{x|x<2且x≠1}.
點(diǎn)評 本題考查了函數(shù)的定義域,熟練掌握求函數(shù)定義域的法則是解題的關(guān)鍵,函數(shù)的定義域要用集合或區(qū)間的形式表示,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 銳角三角形 | B. | 鈍角三角形 | ||
C. | 等腰且鈍角三角形 | D. | 等腰三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$或0 | B. | $\frac{4}{3}$或0 | C. | -$\frac{3}{4}$或0 | D. | -$\frac{4}{3}$或0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,+∞) | B. | (-ln2,+∞) | C. | (-2,-1) | D. | (1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com