(本小題滿分14分)
已知函數(shù)
(1)討論函數(shù)在定義域內(nèi)的極值點的個數(shù);
(2)若函數(shù)處取得極值,對,恒成立,
求實數(shù)的取值范圍;
(3)當(dāng)時,求證:

(Ⅰ)當(dāng)上沒有極值點,當(dāng)時,上有一個極值點. (Ⅱ). (Ⅲ)證明:見解析。

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題共14分)已知函數(shù)其中常數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)遞增區(qū)間;
(2)當(dāng)時,若函數(shù)有三個不同的零點,求m的取值范圍;
(3)設(shè)定義在D上的函數(shù)在點處的切線方程為當(dāng)時,若在D內(nèi)恒成立,則稱P為函數(shù)的“類對稱點”,請你探究當(dāng)時,函數(shù)是否存在“類對稱點”,若存在,請最少求出一個“類對稱點”的橫坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

本題滿分15分)已知函數(shù).
(Ⅰ)當(dāng)時,求函數(shù)的極值點;
(Ⅱ)若函數(shù)在導(dǎo)函數(shù)的單調(diào)區(qū)間上也是單調(diào)的,求的取值范圍;
(Ⅲ) 當(dāng)時,設(shè),且是函數(shù)的極值點,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
已知函數(shù),
(1)求為何值時,上取得最大值;
(2)設(shè),若是單調(diào)遞增函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),= 是自然對數(shù)的底)
(1)若函數(shù)是(1,+∞)上的增函數(shù),求的取值范圍;
(2)若對任意的>0,都有,求滿足條件的最大整數(shù)的值;
(3)證明:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
已知函數(shù)在(0,1)上是增函數(shù).(1)求的取值范圍;
(2)設(shè)),試求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知函數(shù).
(1)若上是增函數(shù),求實數(shù)的取值范圍;
(2)若的極值點,求上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分13分)已知是定義在上的奇函數(shù),當(dāng)時,
(1)求的解析式;
(2)是否存在負實數(shù),使得當(dāng)的最小值是4?如果存在,求出的值;如果不存在,請說明理由。
(3)對如果函數(shù)的圖像在函數(shù)的圖像的下方,則稱函數(shù)在D上被函數(shù)覆蓋。求證:若時,函數(shù)在區(qū)間上被函數(shù)覆蓋。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分10分)
設(shè)函數(shù)為奇函數(shù),其圖象在點處的切線與直線垂直,導(dǎo)函數(shù)的最小值為.試求,的值。

查看答案和解析>>

同步練習(xí)冊答案