【題目】已知兩個定點,動點滿足.設動點的軌跡為曲線,直線.
(1)求曲線的軌跡方程;
(2)若與曲線交于不同的兩點,且(為坐標原點),求直線的斜率;
(3)若, 是直線上的動點,過作曲線的兩條切線,切點為,探究:直線是否過定點.
【答案】(1);(2);(3).
【解析】
(1)設點P坐標為(x,y),運用兩點的距離公式,化簡整理,即可得到所求軌跡的方程;(2)由,則點到邊的距離為,由點到線的距離公式得直線的斜率;(3)由題意可知:O,Q,M,N四點共圓且在以OQ為直徑的圓上,設,則圓的圓心為運用直徑式圓的方程,得直線的方程為,結合直線系方程,即可得到所求定點.
(1)設點的坐標為
由可得,,
整理可得
所以曲線的軌跡方程為.
(2)依題意,,且,則點到邊的距離為
即點到直線的距離,解得
所以直線的斜率為.
(3)依題意,,則都在以為直徑的圓上
是直線上的動點,設
則圓的圓心為,且經(jīng)過坐標原點
即圓的方程為 ,
又因為在曲線上
由,可得
即直線的方程為
由且可得,解得
所以直線是過定點.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四邊形ACFE為矩形,平面ACFE⊥平面ABCD,CF=1.
(Ⅰ)求證:BC⊥平面ACFE;
(Ⅱ)點M在線段EF上運動,設平面MAB與平面FCB所成二面角的平面角為θ(θ≤90°),試求cosθ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列{an}的前n項和為 .
(1)求數(shù)列{an}的通項公式an;
(2)是否存在正整數(shù)n,使得 ?若存在,求出n值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),在以原點為極點, 軸正半軸為極軸的極坐標系中,直線的極坐標方程為.
(1)求曲線的普通方程和直線的傾斜角;
(2)設點,直線和曲線交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種產(chǎn)品的廣告費支出x與銷售額y(單位:萬元)之間有如下對應數(shù)據(jù):
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)若廣告費與銷售額具有相關關系,求回歸直線方程;
(2)在已有的五組數(shù)據(jù)中任意抽取兩組,求兩組數(shù)據(jù)其預測值與實際值之差的絕對值都不超過5的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知實數(shù)a、b滿足:a>0,b>0.
(1)若x∈R,求證:|x+a|+|x﹣b|≥2 .
(2)若a+b=1,求證: + + ≥12.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知,,動點滿足,設動點的軌跡為曲線.
(1)求動點的軌跡方程,并說明曲線是什么圖形;
(2)過點的直線與曲線交于兩點,若,求直線的方程;
(3)設是直線上的點,過點作曲線的切線,切點為,設,求證:過三點的圓必過定點,并求出所有定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】校運動會高二理三個班級的3名同學報名參加鉛球、跳高、三級跳遠3個運動項目,每名同學都可以從3個運動項目中隨機選擇一個,且每個人的選擇相互獨立.
(1)求3名同學恰好選擇了2個不同運動項目的概率;
(Ⅱ)設選擇跳高的人數(shù)為試求的分布列及數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com