6.若點P(3a-9,a+2)在角α的終邊上,且cosα≤0,sinα>0,則實數(shù)a的取值范圍是(-2,3].

分析 由條件利用任意角的三角函數(shù)的定義,求出實數(shù)a的取值范圍.

解答 解:∵點P(3a-9,a+2)在角α的終邊上,且cosα≤0,sinα>0,
∴3a-9≤0,a+2>0,求得-2<a≤3,
故答案為:(-2,3].

點評 本題主要考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.f(x)=logax,g(x)=2loga(2x+t-2),(a>0,a≠1,t∈R).
(1)當(dāng)$t=4,x∈[{\frac{1}{4},2}]$時,F(xiàn)(x)=g(x)-f(x)的最小值是-2,求a的值;
(2)當(dāng)$0<a<1,x∈[{\frac{1}{4},2}]$時,有f(x)≥g(x)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知不等式組$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x+2y-4≤0}\end{array}\right.$表示的平面區(qū)域恰好被面積最小的圓C:(x-a)2+(y-b)2=r2及其內(nèi)部所覆蓋,則圓C的方程為( 。
A.(x-1)2+(y-2)2=5B.(x-2)2+(y-1)2=8C.(x-4)2+(y-1)2=6D.(x-2)2+(y-1)2=5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知數(shù)列{an}的前n項和${S_n}={n^2}$,則a5的值為(  )
A.9B.11C.15D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.一個三角形的三個內(nèi)角A,B,C 成等差數(shù)列,那么tan(A+C)的值是$-\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=$\frac{2}{3}$x3-2ax2-3x(a∈R),若曲線y=f(x)在點P(1,f(1))處的切線與直線x+3y+1=0垂直,則實數(shù)a的值為( 。
A.-1B.1C.-$\frac{1}{6}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列函數(shù)中,在區(qū)間(1,+∞)上為增函數(shù)的是( 。
A.y=-3x+1B.y=$\frac{2}{x}$C.y=x2-4x+5D.y=|x-1|+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知曲線y=x3+3x2+6x-10,點P(x,y)在該曲線上移動,在P點處的切線設(shè)為l.
(1)求證:此函數(shù)在R上單調(diào)遞增;
(2)求l的斜率的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.f(x)=x•lg($\frac{1+x}{1-x}$).
(1)證明函數(shù)的奇偶性;
(2)判斷f(x)在[0,1)上的單調(diào)性(只需寫出單調(diào)性結(jié)論,不需要證明過程),并解不等式f(x)>f(2x-1).

查看答案和解析>>

同步練習(xí)冊答案