8.已知$sin(3π+θ)=\frac{1}{3}$,且θ是第二象限角,則tanθ=$-\frac{{\sqrt{2}}}{4}$.

分析 利用誘導(dǎo)公式可求sinθ,進(jìn)而利用同角三角函數(shù)基本關(guān)系式可求cosθ,tanθ的值.

解答 解:∵$sin(3π+θ)=\frac{1}{3}$,且θ是第二象限角,
∴sinθ=$\frac{1}{3}$,cosθ=-$\sqrt{1-si{n}^{2}θ}$=-$\frac{2\sqrt{2}}{3}$,
∴tanθ=$\frac{sinθ}{cosθ}$=$-\frac{{\sqrt{2}}}{4}$.
故答案為:$-\frac{{\sqrt{2}}}{4}$.

點(diǎn)評(píng) 本題主要考查了誘導(dǎo)公式,同角三角函數(shù)基本關(guān)系式在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}滿足a1=1,(an-3)an+1-an+4=0(n∈N*).
(1)求a2,a3,a4;
(2)猜想{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知正數(shù)數(shù)列{an}的前n項(xiàng)和Sn=$\frac{1}{2}$(an+$\frac{1}{an}$),
(1)求a1,a2,a3;
(2)歸納猜想an的表達(dá)式,并用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某初中三個(gè)年級(jí)學(xué)生人數(shù)總數(shù)是1700人,其中七年級(jí)600人,八年級(jí)540人,九年級(jí)560人.采用分層抽樣的方法調(diào)查學(xué)生視力情況,在抽取樣本中,七年級(jí)有240人,則該樣本的九年級(jí)人數(shù)為( 。
A.180B.198C.220D.224

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)點(diǎn)E,F(xiàn)分別是棱長(zhǎng)為2的正方體ABCD-A1B1C1D1的棱BC,BB1的中點(diǎn).如圖,以D為坐標(biāo)原點(diǎn),$\overrightarrow{DA}$,$\overrightarrow{DC}$,$\overrightarrow{D{D_1}}$為x軸、y軸、z軸正方向,建立空間直角坐標(biāo)系.
(I)求$\overrightarrow{{A_1}E}•\overrightarrow{{D_1}F}$;
(II)若點(diǎn)M,N分別是線段A1E與線段D1F上的點(diǎn),問是否存在直線MN,使得MN⊥平面ABCD?若存在,求點(diǎn)M,N的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow$=(4,-3),則$\overrightarrow{a}$•$\overrightarrow$=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知直線l1:(a+1)x+y+4=0與直線l2:2x+ay-8=0平行.則a=( 。
A.1或-2B.$-\frac{2}{3}$C.1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=x3-3ax+b的圖象在(1,f(1))處與y=2相切.
(1)求a,b的值;
(2)求f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若sinα=2cosα,函數(shù)f(x)=2x-tanα,則f(0)=-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案