13.已知A表示點(diǎn),a,b,c表示直線,M,N表示平面,給出以下命題:
①a⊥M,若M⊥N,則a∥N       
②a⊥M,若b∥M,c∥a,則a⊥b,c⊥b
③a⊥M,b?M,若b∥M,則b⊥a
④a?β,b∩β=A,c為b在β內(nèi)的射影,若a⊥c,則a⊥b.
其中命題成立的是②③④.

分析 根據(jù)空間線面之間的位置關(guān)系及幾何特征,逐一分析四個(gè)命題的真假,可得答案.

解答 解:①a⊥M,若M⊥N,則a∥N,或a?N,故錯(cuò)誤;
②a⊥M,若b∥M,c∥a,則a⊥b,c⊥b,故正確;
③a⊥M,b?M,若b∥M,則b⊥a,故正確;
④a?β,b∩β=A,c為b在β內(nèi)的射影,若a⊥c,則a⊥b,故正確.
故答案為:②③④

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了空間線面之間的位置關(guān)系及幾何特征,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{4-{x}^{2},(x>0)}\\{2,(x=0)}\\{1-2x,(x<0)}\end{array}\right.$.
(Ⅰ)畫(huà)出函數(shù)f(x)圖象;
(Ⅱ)求f(-a2-1)(a∈R),f(f(3))的值;
(Ⅲ)當(dāng)-4≤x<3時(shí),求f(x)取值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.f(x)為奇函數(shù),且x>0時(shí),f(x)=3x+5,則x<0時(shí),f(x)=3x-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.函數(shù)y=ax+2(a>0,且a≠1)的圖象經(jīng)過(guò)的定點(diǎn)坐標(biāo)是(-2,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.化簡(jiǎn):
(1)$\root{6}{{{{(\frac{{8{a^3}}}{{125{b^3}}})}^4}}}$•($\frac{{8{a^{-3}}}}{{27{b^6}}}$)${\;}^{-\frac{1}{3}}}$;
(2)(lg2)•[(ln$\sqrt{e}$)-1+log${\;}_{\sqrt{2}}}$5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.函數(shù)y=$\frac{\sqrt{x+1}}{x-1}$的定義域是(  )
A.[-1,+∞)B.[-1,1)C.(1,+∞)D.[-1,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知集合A={x|-4≤x-6≤0},集合B={x|2x-6≥3-x}.
(1)求∁R(A∩B);
(2)若C={x|x≤a},且A∩C=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,7},則∁UA={2,4,6}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.f(x)=-x|x|+px.
(1)判斷函數(shù)的奇偶性;
(2)當(dāng)p=-2時(shí),判斷函數(shù)f(x)在(-∞,0)上單調(diào)性并加以證明;
(3)當(dāng)p=2時(shí),畫(huà)出函數(shù)的圖象并指出單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案