【題目】已知函數(shù), , .
(1)當(dāng)時,求的極值;
(2)令,求函數(shù)的單調(diào)減區(qū)間.
【答案】(1)當(dāng)時, 取極大值;(2)詳見解析.
【解析】試題分析:(1)將a=0代入,求出f(x)的導(dǎo)數(shù),從而求出函數(shù)的極值;(2)先求出
h(x)的導(dǎo)數(shù),通過討論a的范圍,從而求出函數(shù)的遞減區(qū)間.
試題解析:
(1)當(dāng)時, ,故()
當(dāng)時, , 單調(diào)遞增;
當(dāng)時, , 單調(diào)遞減;
故當(dāng)時, 取極大值.
(2) ,令得, ,
若,由得, 的單調(diào)減區(qū)間為;
若,①當(dāng)時, ,由得,或,
所以的單調(diào)減區(qū)間為, ;
②當(dāng)時,總有,故的單調(diào)減區(qū)間為;
③當(dāng)時, ,由得,或,
所以的單調(diào)減區(qū)間為, ;
綜上所述,當(dāng), 的單調(diào)減區(qū)間為, ;
當(dāng)時, 的單調(diào)減區(qū)間為;
當(dāng)時, 的單調(diào)減區(qū)間為, ;
當(dāng)時, 的單調(diào)減區(qū)間為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中, 為正三角形,四邊形為矩形,平面 平面, , 分別為的中點(diǎn)。
(Ⅰ)求證: //平面;
(Ⅱ)求二面角的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解某地區(qū)心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)地對入院
的50人進(jìn)行了問卷調(diào)查,得到了如下的列聯(lián)表:
患心肺疾病 | 不患心肺疾病 | 合計(jì) | |
男 | 20 | 5 | 25 |
女 | 10 | 15 | 25 |
合計(jì) | 30 | 20 | 50 |
(1)用分層抽樣的方法在患心肺疾病的人群中抽取6人,其中男性抽多少人?
(2)在上述抽取的6人中選2人,求恰有一名女性的概率;
(3)為了研究心肺疾病是否與性別有關(guān),請計(jì)算出統(tǒng)計(jì)量,判斷是否有的把握認(rèn)為
患心肺疾病與性別有關(guān)?
右面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式: )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知焦點(diǎn)在軸上的橢圓的中心是原點(diǎn),離心率為雙曲線離心率的一半,直線被橢圓截得的線段長為.直線: 與軸交于點(diǎn),與橢圓交于兩個相異點(diǎn),且.
(1)求橢圓的方程;
(2)是否存在實(shí)數(shù),使?若存在,求的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知曲線(為參數(shù)),在以為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,曲線,曲線.
(1)求曲線與的交點(diǎn)的直角坐標(biāo);
(2)設(shè)點(diǎn), 分別為曲線上的動點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個焦點(diǎn)坐標(biāo)分別是,并且經(jīng)過點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若斜率為的直線經(jīng)過點(diǎn),且與橢圓交于不同的兩點(diǎn),求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com