在平面直角坐標(biāo)系中,直線l與拋物線
相交于不同的兩點A,B.
(I)如果直線l過拋物線的焦點,求的值;
(II)如果,證明直線l必過一定點,并求出該定點坐標(biāo).
(I)-3.(II)直線l過定點(2,0).
解析試題分析:(I)注意到拋物線的焦點為(1,0),因此可設(shè)并代入拋物線y2=4x中消去
,
設(shè)應(yīng)用韋達定理得到
從而易于將
用坐標(biāo)表示.
(II)設(shè)代入方程
消去
得,
設(shè)
得到
.
將 用坐標(biāo)表示,得到
的方程,通過確定
,達到證明直線過定點的目的.
試題解析:(I)由題意知,拋物線的焦點為(1,0),
設(shè)代入拋物線
中消去x得,
,設(shè)
則
=
6分
(II)設(shè)代入方程
消去
得,
設(shè)
得到
∵=
=
=b2-4b.
令∴直線l過定點(2,0). 12分
考點:拋物線的幾何性質(zhì),直線與拋物線的位置關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓過點
,且離心率
。
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與橢圓
相交于
,
兩點(
不是左右頂點),橢圓的右頂點為D,且滿足
,試判斷直線
是否過定點,若過定點,求出該定點的坐標(biāo);若不過定點,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知三點P(5,2)、F1(-6,0)、F2(6,0)。
(1)求以F1、F2為焦點且過點P的橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點P、F1、F2關(guān)于直線y=x的對稱點分別為,求以
為焦點且過
點的雙曲線的標(biāo)準(zhǔn)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知一個圓的圓心為坐標(biāo)原點,半徑為
.從這個圓上任意一點
向
軸作垂線
,
為垂足.
(Ⅰ)求線段中點
的軌跡方程;
(Ⅱ)已知直線與
的軌跡相交于
兩點,求
的面積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心為直角坐標(biāo)系xOy的原點,焦點在s軸上,它的一個頂點到兩個焦點的距離分別是7和1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若P為橢圓C上的動點,M為過P且垂直于x軸的直線上的點,=λ,求點M的軌跡方程,并說明軌跡是什么曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是拋物線
上的點,
是
的焦點, 以
為直徑的圓
與
軸的另一個交點為
.
(Ⅰ)求與
的方程;
(Ⅱ)過點且斜率大于零的直線
與拋物線
交于
兩點,
為坐標(biāo)原點,
的面積為
,證明:直線
與圓
相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在原點,焦點F在軸上,離心率
,點
在橢圓C上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若斜率為的直線
交橢圓
與
、
兩點,且
、
、
成等差數(shù)列,點M(1,1),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:
的長軸長為4,且過點
.
(1)求橢圓的方程;
(2)設(shè)、
、
是橢圓上的三點,若
,點
為線段
的中點,
、
兩點的坐標(biāo)分別為
、
,求證:
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com