已知橢圓C的中心在原點(diǎn),焦點(diǎn)F在軸上,離心率,點(diǎn)在橢圓C上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若斜率為的直線(xiàn)交橢圓、兩點(diǎn),且、成等差數(shù)列,點(diǎn)M(1,1),求的最大值.

(1);(2).

解析試題分析:(1)設(shè)出橢圓標(biāo)準(zhǔn)方程,根據(jù)已知條件解出即可;(2)由題意可知,直線(xiàn)的斜率存在且不為,故可設(shè)直線(xiàn)的方程為,A,B點(diǎn)坐標(biāo)為,聯(lián)立直線(xiàn)和橢圓方程,利用韋達(dá)定理得,然后利用直線(xiàn)的斜率依次成等差數(shù)列得出,又,所以,即,然后求出弦長(zhǎng),計(jì)算三角形面積,求其最大值.
試題解析:1)設(shè)橢圓方程為,由題意知
,…①
,…②
聯(lián)立①②解得,,所以橢圓方程為        (4分)
2)由題意可知,直線(xiàn)的斜率存在且不為,故可設(shè)直線(xiàn)的方程為
滿(mǎn)足,
消去
,
,.
因?yàn)橹本(xiàn)的斜率依次成等差數(shù)列,
所以,,即,
,所以,
.                                     (9分)
聯(lián)立    易得弦AB的長(zhǎng)為  
又點(diǎn)M到的距離 
所以
平方再化簡(jiǎn)求導(dǎo)易得時(shí)S取最大值        (13分)
考點(diǎn):橢圓標(biāo)準(zhǔn)方程、橢圓的離心率、直線(xiàn)方程、等差數(shù)列、點(diǎn)到直線(xiàn)的距離公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知橢圓的離心率為,以橢圓的左頂點(diǎn)為圓心作圓,設(shè)圓與橢圓交于點(diǎn)與點(diǎn).(12分)

(1)求橢圓的方程;(3分)
(2)求的最小值,并求此時(shí)圓的方程;(4分)
(3)設(shè)點(diǎn)是橢圓上異于,的任意一點(diǎn),且直線(xiàn)分別與軸交于點(diǎn),為坐標(biāo)原點(diǎn),求證:為定值.(5分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,直線(xiàn)l與拋物線(xiàn)相交于不同的兩點(diǎn)A,B.
(I)如果直線(xiàn)l過(guò)拋物線(xiàn)的焦點(diǎn),求的值;
(II)如果,證明直線(xiàn)l必過(guò)一定點(diǎn),并求出該定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,已知橢圓的離心率,且橢圓C上一點(diǎn)到點(diǎn)Q的距離最大值為4,過(guò)點(diǎn)的直線(xiàn)交橢圓于點(diǎn)
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P為橢圓上一點(diǎn),且滿(mǎn)足(O為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)橢圓中心在坐標(biāo)原點(diǎn),是它的兩個(gè)頂點(diǎn),直線(xiàn)與直線(xiàn)相交于點(diǎn)D,與橢圓相交于兩點(diǎn).
(Ⅰ)若,求的值;
(Ⅱ)求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓,圓,動(dòng)圓與已知兩圓都外切.
(1)求動(dòng)圓的圓心的軌跡的方程;
(2)直線(xiàn)與點(diǎn)的軌跡交于不同的兩點(diǎn),的中垂線(xiàn)與軸交于點(diǎn),求點(diǎn)的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓長(zhǎng)軸的左右端點(diǎn)分別為A,B,短軸的上端點(diǎn)為M,O為橢圓的中心,F(xiàn)為橢圓的右焦點(diǎn),且·=1,||=1.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線(xiàn)l交橢圓于P,Q兩點(diǎn),問(wèn):是否存在直線(xiàn)l,使得點(diǎn)F恰為△PQM的垂心?若存在,求出直線(xiàn)l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

經(jīng)過(guò)點(diǎn)且與直線(xiàn)相切的動(dòng)圓的圓心軌跡為.點(diǎn)在軌跡上,且關(guān)于軸對(duì)稱(chēng),過(guò)線(xiàn)段(兩端點(diǎn)除外)上的任意一點(diǎn)作直線(xiàn),使直線(xiàn)與軌跡在點(diǎn)處的切線(xiàn)平行,設(shè)直線(xiàn)與軌跡交于點(diǎn).
(1)求軌跡的方程;
(2)證明:;
(3)若點(diǎn)到直線(xiàn)的距離等于,且的面積為20,求直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知,,,直線(xiàn)與線(xiàn)段、分別交于點(diǎn)、.

(1)當(dāng)時(shí),求以為焦點(diǎn),且過(guò)中點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)作直線(xiàn)于點(diǎn),記的外接圓為圓.
①求證:圓心在定直線(xiàn)上;
②圓是否恒過(guò)異于點(diǎn)的一個(gè)定點(diǎn)?若過(guò),求出該點(diǎn)的坐標(biāo);若不過(guò),請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案