【題目】在直角坐標(biāo)系中,直線l的參數(shù)方程為 t為參數(shù)).若以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,則曲線C的極坐標(biāo)方程為 . (Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)求直線l被曲線C所截得的弦長.

【答案】解:(1)由 得:ρ=cosθ+sinθ,兩邊同乘以ρ得:ρ2=ρcosθ+ρsinθ,

∴x2+y2﹣x﹣y=0,即

( 2 )將直線參數(shù)方程代入圓C的方程得:5t2﹣21t+20=0,


【解析】(1)曲線的極坐標(biāo)方程即ρ=cosθ+sinθ,兩邊同乘以ρ得:ρ2=ρcosθ+ρsinθ,再根據(jù)直角坐標(biāo)與極坐標(biāo)的互化公式求得C的直角坐標(biāo)方程.(2)將直線參數(shù)方程代入圓C的方程,利用根與系數(shù)的關(guān)系和弦長公式求得直線l被曲線C所截得的弦長.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用直線的參數(shù)方程的相關(guān)知識(shí)可以得到問題的答案,需要掌握經(jīng)過點(diǎn),傾斜角為的直線的參數(shù)方程可表示為為參數(shù)).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了普及環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某大學(xué)隨機(jī)抽取30名學(xué)生參加環(huán)保知識(shí)測試,得分(十分制)如圖所示,假設(shè)得分值的中位數(shù)為me , 眾數(shù)為mO , 平均值為 ,則( )

A.me=mO
B.me=mO<
C.me<mO<
D.mO<me<

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,函數(shù) .若函數(shù) 恰好有2個(gè)不同的零點(diǎn),則實(shí)數(shù) 的取值范圍是 ( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年高一新生入學(xué)后,為了了解新生學(xué)業(yè)水平,某區(qū)對(duì)新生進(jìn)行了水平測試,隨機(jī)抽取了50名新生的成績,其相關(guān)數(shù)據(jù)統(tǒng)計(jì)如下:

分?jǐn)?shù)段

頻數(shù)

選擇題得分24分以上(含24分)

[40,50)

5

2

[50,60)

10

4

[60,70)

15

12

[70,80)

10

6

[80,90)

5

4

[90,100)

5

5

(Ⅰ)若從分?jǐn)?shù)在[70,80),[80,90)的被調(diào)查的新生中各隨機(jī)選取2人進(jìn)行追蹤調(diào)查,求恰好有2名新生選擇題得分不足24分的概率;
(Ⅱ)在(Ⅰ)的條件下,記選中的4名新生中選擇題得分不足24分的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠的A、B、C三個(gè)不同車間生產(chǎn)同一產(chǎn)品的數(shù)量(單位:件)如下表所示.質(zhì)檢人員用分層抽樣的方法從這些產(chǎn)品中共抽取6件樣品進(jìn)行檢測.

車間

A

B

C

數(shù)量

50

150

100


(1)求這6件樣品中來自A、B、C各車間產(chǎn)品的數(shù)量;
(2)若在這6件樣品中隨機(jī)抽取2件進(jìn)行進(jìn)一步檢測,求這2件商品來自相同車間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某冷飲店為了解氣溫變化對(duì)其營業(yè)額的影響,隨機(jī)記錄了該店1月份銷售淡季中5天的日營業(yè)額y(單位:百元)與該地當(dāng)日最低氣溫x(單位:℃)的數(shù)據(jù),如下表所示:

x

3

6

7

9

10

y

12

10

8

8

7

(Ⅰ)判定y與x之間是正相關(guān)還是負(fù)相關(guān),并求回歸方程 = x+
(Ⅱ)若該地1月份某天的最低氣溫為6℃,預(yù)測該店當(dāng)日的營業(yè)額
(參考公式: = = , = ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=lnx﹣ax+ ﹣1. (Ⅰ)當(dāng)a=1時(shí),求曲線f(x)在x=1處的切線方程;
(Ⅱ)當(dāng)a= 時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)在(Ⅱ)的條件下,設(shè)函數(shù)g(x)=x2﹣2bx﹣ ,若對(duì)于x1∈[1,2],x2∈[0,1],使f(x1)≥g(x2)成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=alnx+b(a,b∈R),曲線f(x)在x=1處的切線方程為x﹣y﹣1=0.
(1)求a,b的值;
(2)證明:f(x)+ ≥1;
(3)已知滿足xlnx=1的常數(shù)為k.令函數(shù)g(x)=mex+f(x)(其中e是自然對(duì)數(shù)的底數(shù),e=2.71828…),若x=x0是g(x)的極值點(diǎn),且g(x)≤0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD為正方形,過A作線段SA⊥平面ABCD,過A作與SC垂直的平面交SB,SC,SD于E,K,H,求證:E是點(diǎn)A在直線SB上的射影.

查看答案和解析>>

同步練習(xí)冊(cè)答案