16.完成一項(xiàng)裝修工程,請(qǐng)木工共需付工資每人500元,請(qǐng)瓦工共需付工資每人400元,現(xiàn)有工人工資預(yù)算20000元,設(shè)木工x人,瓦工y人,則工人滿足的關(guān)系式是( 。
A.5x+4y<200B.5x+4y≥200C.5x+4y=200D.5x+4y≤200

分析 由題意可得總的工資50x+40y≤2000,化簡(jiǎn)即可.

解答 解:由題意可得:請(qǐng)木工需付工資每人500元,請(qǐng)瓦工需付工資每人400元,
設(shè)木工x人,瓦工y人,可得總的工資為500x+400y,
又因?yàn)楝F(xiàn)有工人工資預(yù)算20000元,故500x+400y≤20000,
化簡(jiǎn)可得5x+4y≤200,
故選:D.

點(diǎn)評(píng) 本題考查簡(jiǎn)單線性規(guī)劃的應(yīng)用,如何建模是解決這類問(wèn)題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.2017年4月1日,中共中央、國(guó)務(wù)院決定設(shè)立的國(guó)家級(jí)新區(qū)--雄安新區(qū).雄安新區(qū)建立后,在該區(qū)某街道臨近的A路口和B路口的車流量變化情況,如表所示:
天數(shù)t(單位:天)1日2日3日4日5日
A路口車流量x(百輛)0.20.50.80.91.1
B路口車流量y(百輛)0.230.220.511.5
(1)求前5天通過(guò)A路口車流量的平均值和通過(guò)B路口的車流量的方差,
(2)根據(jù)表中數(shù)據(jù)我們認(rèn)為這兩個(gè)臨近路口有較強(qiáng)的線性相關(guān)關(guān)系,第10日在A路口測(cè)得車流量為3百輛時(shí),你能估計(jì)這一天B路口的車流量嗎?大約是多少呢?(最后結(jié)果保留兩位小數(shù))(參考公式:$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=7}^n{{{({{x_i}-\overline x})}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)橢圓方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),橢圓上一點(diǎn)到兩焦點(diǎn)的距離和為4,過(guò)焦點(diǎn)且垂直于x軸的直線交橢圓于A,B兩點(diǎn),AB=2.
(1)求橢圓方程;
(2)若M,N是橢圓C上的點(diǎn),且直線OM與ON的斜率之積為$-\frac{1}{2}$,是否存在動(dòng)點(diǎn)P(x0,y0),若$\overrightarrow{OP}=\overrightarrow{OM}+2\overrightarrow{ON}$,有$x_0^2+2y_0^2$為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.全集U={0,1,3,5,6,8},集合A={ 1,5,8 },B={2},則集合(∁UA)∪B=( 。
A.{0,2,3,6}B.{ 0,3,6}C.{2,1,5,8}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.?dāng)?shù)列{an}中,a1=2,a n+1=3an+2n,求通項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列命題中正確的是( 。
A.若|$\overrightarrow{a}$|=|$\overrightarrow$|,則$\overrightarrow{a}$=$\overrightarrow$B.若|$\overrightarrow{a}$|=1,則$\overrightarrow{a}$=1C.若|$\overrightarrow{a}$|>|$\overrightarrow$|,則$\overrightarrow{a}$>$\overrightarrow$D.若$\overrightarrow{a}$=$\overrightarrow$,$\overrightarrow{a}$∥$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若a>b>0,則下列不等式一定不成立的是(  )
A.$\frac{1}{a}$<$\frac{1}$B.log2a>log2bC.a2+b2≤2a+2b-2D.b<$\sqrt{ab}$<$\frac{a+b}{2}$<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列四個(gè)結(jié)論:①若x>0,則x>sinx恒成立;
②命題“若x-sinx=0則x=0”的逆命題為“若x≠0,則x-sinx≠0”
③“命題p∨q為真”是“命題p∧q為真”的充分不必要條件;
④命題“?x∈R+,x-lnx>0”的否定是“$?{x_0}∈{R^+},{x_0}-ln{x_0}≤0$”.
其中正確結(jié)論的個(gè)數(shù)是( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.在△ABC中,∠BAC=90°,BC=5,D,E為邊BC上的兩點(diǎn),且滿足:$\overrightarrow{BD}=\frac{1}{3}\overrightarrow{BC},\overrightarrow{CE}=\frac{1}{3}\overrightarrow{CB}$,則$\overrightarrow{AD}•\overrightarrow{AE}$的值為$\frac{50}{9}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案