13.以下數(shù)表的構(gòu)造思路源于我國(guó)南宋數(shù)學(xué)家楊輝所著的《詳解九章算術(shù)》一書(shū)中的“楊輝三角形”.
1  2  3  4  5  …2013   2014  2015  2016
3  5  7  9  …4027  4029  4031
8  12  16  …8056  8060
20  28  …16116
該表由若干數(shù)字組成,從第二行起,每一行中的數(shù)字均等于其“肩上”兩數(shù)之和,表中最后一行僅有一個(gè)數(shù),則這個(gè)數(shù)為( 。
A.2017×22015B.2017×22014C.2016×22015D.2016×22014

分析 由題意,數(shù)表的每一行都是等差數(shù)列,且第一行公差為1,第二行公差為2,第三行公差為4,…,第2015行公差為22014,可得:第n行的第一個(gè)數(shù)為:(n+1)×2n-2,即可得出.

解答 解:由題意,數(shù)表的每一行都是等差數(shù)列,
且第一行公差為1,第二行公差為2,第三行公差為4,…,第2015行公差為22014,
故第1行的第一個(gè)數(shù)為:2×2-1,
第2行的第一個(gè)數(shù)為:3×20,
第3行的第一個(gè)數(shù)為:4×21,

第n行的第一個(gè)數(shù)為:(n+1)×2n-2,
第2016行只有M,
則M=(1+2016)•22014=2017×22014,
故選:B

點(diǎn)評(píng) 本題考查了等差和等比數(shù)列的通項(xiàng)公式及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.函數(shù)f(x)=sinx-cosx-1的最小正周期是2π,單調(diào)遞增區(qū)間是[2kπ-$\frac{π}{4}$,2kπ+$\frac{3π}{4}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{{\sqrt{3}}}{2}$sin$\frac{x}{2}$-$\frac{1}{2}$cos$\frac{x}{2}$.求
(1)函數(shù)f(x)的最值及對(duì)應(yīng)自變量的取值;
(2)函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在直角坐標(biāo)系xOy中,曲線(xiàn)C:$\frac{{x}^{2}}{4}$+y2=1的右頂點(diǎn)是A、上頂點(diǎn)是B.
(1)求以AB為直徑的圓E的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)D(0,2)且斜率為k(k>0)的直線(xiàn)l交曲線(xiàn)C于兩點(diǎn)M,N且$\overrightarrow{OM}$•$\overrightarrow{ON}$=0,其中O為坐標(biāo)原點(diǎn),求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,四邊形 A BCD為平行四邊形,且SD=2,SC=DC=AS=AD=$\sqrt{2}$,平面 ASD⊥平面SDC.
(1)求證:SD⊥AC;
(2)求點(diǎn)D到面SBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知等比數(shù)列a1,a2,a3的和為定值m(m>0)且公比為負(fù)數(shù),則a1a2a3的最小值 為-m3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn=4an+1(n∈N+),bn=an+1-2an,求證:數(shù)列{bn}是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在直角坐標(biāo)系xOy中,曲線(xiàn)C1的參數(shù)方程為$\left\{\begin{array}{l}{x=2+2cosφ}\\{y=2sinφ}\end{array}\right.$(φ為參數(shù),0≤φ≤π),曲線(xiàn)C2的參數(shù)方程為$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=5+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)).
(Ⅰ)求C1的普通方程并指出它的軌跡;
(Ⅱ)以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,射線(xiàn)OM:θ=$\frac{π}{4}$與半圓C的交點(diǎn)為O,P,與直線(xiàn)l的交點(diǎn)為Q,求線(xiàn)段PQ的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)a=$\frac{1}{2}cos6°$-$\frac{{\sqrt{3}}}{2}sin6°$,b=cos26°•$\frac{2tan13°}{{1-{{tan}^2}13°}}$,c=$\sqrt{\frac{1-cos50°}{2}}$,則有( 。
A.a>b>cB.a<b<cC.a<c<bD.b<c<a

查看答案和解析>>

同步練習(xí)冊(cè)答案