A. | -9 | B. | -16 | C. | -12 | D. | -11 |
分析 (1)先對(duì)函數(shù)f(x)求導(dǎo)數(shù)f'(x),然后根據(jù)導(dǎo)數(shù)f'(x)的零點(diǎn)得出導(dǎo)數(shù)大于零和導(dǎo)數(shù)小于零的區(qū)間,導(dǎo)數(shù)大于零的區(qū)間是函數(shù)的增區(qū)間,而導(dǎo)數(shù)小于零的區(qū)間是函數(shù)的減區(qū)間,從而得到極值與最大值、最小值.
解答 解:∵f'(x)=3x2-12=3(x-2)(x+2),
由f'(x)<0,得x∈(-2,2),∴x∈(-2,2)時(shí),函數(shù)為減函數(shù);
同理x∈(-∞,-2)或x∈(2,+∞)時(shí),函數(shù)為增函數(shù).
綜上所述,函數(shù)的增區(qū)間為(-4,-2)、(2,4);減區(qū)間為(-2,2)
x=-2時(shí),f(x)極大值=f(-2)=16,x=2時(shí),f(x)極小值=f(2)=-16
f(x)max=f(x)極大值=f(-2)=16,f(x)min=f(x)極小值=f(2)=-16.
故選:B.
點(diǎn)評(píng) 本題著重考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值等等知識(shí)點(diǎn),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [$\frac{3}{2}$,+∞) | B. | (-∞,0) | C. | (0,$\frac{3}{2}$] | D. | (0,$\frac{3}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,1) | B. | (-∞,$\frac{4}{5}$) | C. | (0,1) | D. | (0,$\frac{4}{5}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
x | -1 | 0 | 4 | 5 |
f(x) | 1 | 2 | 2 | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com