A. | (-∞,1) | B. | (-∞,$\frac{4}{5}$) | C. | (0,1) | D. | (0,$\frac{4}{5}$) |
分析 由題意可得f′(x)≤0在x∈(1,2)上成立,即a≤$\frac{2x}{1+{x}^{2}}$在x∈(1,2)上成立,令g(x)=$\frac{2x}{1+{x}^{2}}$,則g(x)=$\frac{2x}{1+{x}^{2}}$,在x∈(1,2)上單調遞減,即可得出結論.
解答 解:f′(x)=$\frac{a}{x}$+ax-2,
∴f′(x)≤0在x∈(1,2)上成立,
即$\frac{a}{x}$+ax-2≤0,在x∈(1,2)上成立,
即a≤$\frac{2x}{1+{x}^{2}}$在x∈(1,2)上成立.
令g(x)=$\frac{2x}{1+{x}^{2}}$,則g′(x)=$\frac{2(1-{x}^{2})}{1+{x}^{2}}$<0,
∴g(x)=$\frac{2x}{1+{x}^{2}}$,在x∈(1,2)上單調遞減,
∵g(2)=$\frac{4}{5}$,
∴a<$\frac{4}{5}$.
故選:B.
點評 本題考查學生利用導數研究函數的單調性知識及轉化劃歸思想的運用能力,屬中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (1,+∞) | B. | (-1,1) | C. | (-∞,1) | D. | (-∞,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6. |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com