16.已知雙曲線C1:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的離心率為2,若拋物線C2:x2=2py(p>0)的焦點(diǎn)到雙曲線C1的漸近線的距離為2,則p=8.

分析 利用雙曲線的離心率求出ab關(guān)系,得到漸近線方程,利用拋物線的焦點(diǎn)到直線的距離求解即可.

解答 解:由題意可得雙曲線C1:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,漸近線為y=±$\frac{a}$x,
化為一般式可得bx±ay=0,離心率e=$\frac{c}{a}$=$\sqrt{\frac{{a}^{2}+^{2}}{{a}^{2}}}$=2,
解得b=$\sqrt{3}$a,∴y=±$\sqrt{3}$x
又拋物線C2:x2=2py(p>0)(p>0)的焦點(diǎn)為(0,$\frac{p}{2}$),
故焦點(diǎn)到$\sqrt{3}$x±y=0的距離d=$\frac{\left|\frac{p}{2}\right|}{\sqrt{1+3}}$=$\frac{p}{4}$=2,
∴p=8,
故答案為:8.

點(diǎn)評 本題考查雙曲線與拋物線的簡單性質(zhì),涉及離心率的應(yīng)用和點(diǎn)到直線的距離公式,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在平面直角坐標(biāo)系xoy中,已知直線l:8x+6y+1=0,圓C1::x2+y2+8x-2y+13=0,圓C2:x2+y2+8tx-8y+16t+12=0.
(1)當(dāng)t=-1時(shí),試判斷圓C1與圓C2的位置關(guān)系,并說明理由;
(2)若圓C1與圓C2關(guān)于直線l對稱,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知拋物線y2=2px(p>0)的焦點(diǎn)是雙曲線$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{p}$=1的一個(gè)焦點(diǎn),則雙曲線方程為$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{8}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=loga(1+x),g(x)=loga(1-x)其中(a>0且a≠1),設(shè)h(x)=f(x)-g(x).
(1)求函數(shù)h(x)的定義域,判斷h(x)的奇偶性,并說明理由;
(2)求使h(x)>0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.將一顆骰子先后拋擲2次,觀察向上的點(diǎn)數(shù).
(Ⅰ)列舉出所有可能的結(jié)果,并求兩點(diǎn)數(shù)之和為5的概率;
(Ⅱ)求以第一次向上點(diǎn)數(shù)為橫坐標(biāo)x,第二次向上的點(diǎn)數(shù)為縱坐標(biāo)y的點(diǎn)(x,y)在圓x2+y2=15的內(nèi)部的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.一個(gè)正三棱錐的四個(gè)頂點(diǎn)都在半徑為1的球面上,其中底面的三個(gè)頂點(diǎn)在該球的一個(gè)以球心為圓心的圓上,則該正三棱錐的體積是( 。
A.$\frac{{3\sqrt{3}}}{4}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{3}}}{4}$D.$\frac{{\sqrt{3}}}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知角α的終邊經(jīng)過點(diǎn)$P(-1,\sqrt{3})$,則cosα=( 。
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知i是虛數(shù)單位,m,n∈R,則“m=n=1”是“m2-1-2ni=-2i”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.化簡下列各式:
(1)$\frac{{a}^{2}\root{3}{{a}^{2}b}}{\sqrt{ab}}$;
(2)$\frac{(b\sqrt{ab})^{3}\root{3}{{a}^{2}b}}{\root{3}{a^{2}}}$.

查看答案和解析>>

同步練習(xí)冊答案