【題目】在直角坐標(biāo)系中,以坐標(biāo)原點為極點,以軸正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.

(1)求曲線的直角坐標(biāo)方程;

(2)若兩條互相垂直的直線都經(jīng)過原點(兩條直線與坐標(biāo)軸都不重合)且與曲線分別交于點(異于原點),且,求這兩條直線的直角坐標(biāo)方程.

【答案】(1);(2).

【解析】

(1)根據(jù)直角坐標(biāo)與極坐標(biāo)的轉(zhuǎn)化,兩邊同時乘以,即可化簡為曲線的直角坐標(biāo)方程。

(2)設(shè)出其中一條直線的傾斜角,利用極坐標(biāo)表示出直線的極坐標(biāo)方程,進而表示出另外一個直線的極坐標(biāo)方程,分別代入C的極坐標(biāo)方程,可求得,進而利用三角函數(shù)的最值求得傾斜角,進而得到直線方程。

(1)因為,所以

所以,

故曲線的直角坐標(biāo)方程為.

(2)不妨設(shè)其中一條直線的傾斜角為,則該直線的極坐標(biāo)方程為,

則另一條直線的極坐標(biāo)方程為.

代入曲線的極坐標(biāo)方程得

代入曲線的極坐標(biāo)方程得,

,所以,,

故這兩條直線的直角坐標(biāo)方程分別為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一位老人把他積蓄的枚金幣分給個兒女(、為大于 1 的正整數(shù)).首先, 給老大 1 枚金幣和余下的;然后,從余下的金幣中給老二 2 枚金幣和余下的;依此類推 ,第幾個孩子就分幾枚金幣和余下的,直到最小的孩子分到最后剩下的枚金幣.問老人分給每個孩子的金幣是否一樣多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某些商家為消費者提供免費塑料袋,使購物消費更加方便快捷,但是我們更應(yīng)關(guān)注它對環(huán)境的潛在危害.為了解某市所有家庭每年丟棄塑料袋個數(shù)的情況,統(tǒng)計人員采用了科學(xué)的方法,隨機抽取了200戶,對他們某日丟棄塑料袋的個數(shù)進行了統(tǒng)計,結(jié)果如下表:

1)求當(dāng)日這200戶家庭平均每戶丟棄塑料袋的個數(shù);

2)假設(shè)某市現(xiàn)有家庭100萬戶,據(jù)此估計全市所有家庭每年(以365天計算)丟棄塑料袋的總數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】目前,新冠病毒引發(fā)的肺炎疫情在全球肆虐,為了解新冠肺炎傳播途徑,采取有效防控措施,某醫(yī)院組織專家統(tǒng)計了該地區(qū)500名患者新冠病毒潛伏期的相關(guān)信息,數(shù)據(jù)經(jīng)過匯總整理得到如圖所示的頻率分布直方圖(用頻率作為概率).潛伏期不高于平均數(shù)的患者,稱為“短潛伏者”,潛伏期高于平均數(shù)的患者,稱為“長潛伏者”.

1)求這500名患者潛伏期的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表),并計算出這500名患者中“長潛伏者”的人數(shù);

2)為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否高于平均數(shù)為標(biāo)準(zhǔn)進行分層抽樣,從上述500名患者中抽取300人,得到如下表格.

i)請將表格補充完整;

短潛伏者

長潛伏者

合計

60歲及以上

90

60歲以下

140

合計

300

ii)研究發(fā)現(xiàn),某藥物對新冠病毒有一定的抑制作用,現(xiàn)需在樣本中60歲以下的140名患者中按分層抽樣方法抽取7人做I期臨床試驗,再從選取的7人中隨機抽取兩人做Ⅱ期臨床試驗,求兩人中恰有1人為“長潛伏者”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知ABC的內(nèi)角A,B,C所對邊分別為ab、c,且2acosC=2b-c

1)求角A的大小;

2)若AB=3AC邊上的中線SD的長為,求ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,,點滿足,記點的軌跡為

1)求的方程;

2)設(shè)直線交于、兩點,求的面積(為坐標(biāo)原點);

3)設(shè)是線段中垂線上的動點,過的兩條切線、,分別為切點,判斷是否存在定點,直線始終經(jīng)過點,若存在,求出點的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,四邊形是菱形,四邊形是正方形,,,點的中點.

(1)求證:平面;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中華人民共和國道路交通安全法》第47條的相關(guān)規(guī)定:機動車行經(jīng)人行橫道時,應(yīng)當(dāng)減速慢行;遇行人正在通過人行橫道,應(yīng)當(dāng)停車讓行,俗稱“禮讓斑馬線”,《中華人民共和國道路交通安全法》 第90條規(guī)定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的5個月內(nèi)駕駛員不“禮讓斑馬線”行為統(tǒng)計數(shù)據(jù):

月份

1

2

3

4

5

違章駕駛員人數(shù)

120

105

100

90

85

(1)請利用所給數(shù)據(jù)求違章人數(shù)y與月份之間的回歸直線方程+

(2)預(yù)測該路口7月份的不“禮讓斑馬線”違章駕駛員人數(shù);

(3)交警從這5個月內(nèi)通過該路口的駕駛員中隨機抽查了50人,調(diào)查駕駛員不“禮讓斑馬線”行為與駕齡的關(guān)系,得到如下2列聯(lián)表:

不禮讓斑馬線

禮讓斑馬線

合計

駕齡不超過1年

22

8

30

駕齡1年以上

8

12

20

合計

30

20

50

能否據(jù)此判斷有97.5的把握認(rèn)為“禮讓斑馬線”行為與駕齡有關(guān)?

參考公式及數(shù)據(jù):,.

0.150

0.100

0.050

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A. “f(0)”是“函數(shù)f(x)是奇函數(shù)”的充要條件

B. p:,,則,

C. “若,則”的否命題是“若,則

D. 為假命題,則p,q均為假命題

查看答案和解析>>

同步練習(xí)冊答案