17.將函數(shù)f(x)=2sin2x的圖象向左平移$\frac{π}{6}$單位,再向上平移1個單位,得到函數(shù)y=g(x)的圖象,對任意a∈R,y=g(x)在區(qū)間[a,a+10π]上零點(diǎn)個數(shù)的所有可能值20或者21.

分析 根據(jù)圖象平移變換求出g(x),令g(x)=0可得g(x)可能的零點(diǎn),而[a,a+10π]恰含10個周期,分a是零點(diǎn),a不是零點(diǎn)兩種情況討論,結(jié)合圖象可得g(x)在[a,a+10π]上零點(diǎn)個數(shù)的所有可能值;

解答 解:f(x)=2sin2x,
將y=f(x)的圖象向左平移$\frac{π}{6}$個單位,再向上平移1個單位后得到y(tǒng)=2sin2(x+$\frac{π}{6}$)+1的圖象,所以g(x)=2sin2(x+$\frac{π}{6}$)+1.
令g(x)=0,得x=kπ+$\frac{5}{12}$π或x=kπ+$\frac{3}{4}$π(k∈z),
因為[a,a+10π]恰含10個周期,所以,當(dāng)a是零點(diǎn)時,在[a,a+10π]上零點(diǎn)個數(shù)21,
當(dāng)a不是零點(diǎn)時,a+kπ(k∈z)也都不是零點(diǎn),區(qū)間[a+kπ,a+(k+1)π]上恰有兩個零點(diǎn),故在[a,a+10π]上有20個零點(diǎn).
綜上,y=g(x)在[a,a+10π]上零點(diǎn)個數(shù)的所有可能值為21或20.
故答案為:20或者21.

點(diǎn)評 本題考查函數(shù)y=Asin(ωx+φ)的圖象變換、函數(shù)的奇偶性、根的存在性及根的個數(shù)的判斷,考查數(shù)形結(jié)合思想,結(jié)合圖象分析是解決(2)問的關(guān)鍵

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知sin2α=$\frac{24}{25}$,α∈(π,$\frac{3π}{2}$),則sinα+cosα等于( 。
A.-$\frac{1}{5}$B.$\frac{1}{5}$C.-$\frac{7}{5}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.將函數(shù)$f(x)=\frac{{\sqrt{2}}}{2}sin2x+\frac{{\sqrt{6}}}{2}cos2x$的圖象向右平移$\frac{π}{4}$個單位后得到函數(shù)g(x)的圖象,則$g(\frac{π}{12})$=(  )
A.0B.-1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知圓C的圓心坐標(biāo)為(3,2),且過定點(diǎn)O(0,0).
(1)求圓C的方程;
(2)P為圓C上的任意一點(diǎn),定點(diǎn)Q(8,0),求線段PQ中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在直角坐標(biāo)xOy中,直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=3+\frac{1}{2}t}\\{y=\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$(t為參數(shù)),以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為$ρ=2\sqrt{3}sinθ$.
(1)寫出圓C的直角坐標(biāo)方程及直線l的直角坐標(biāo)方程;
(2)P為直線l上一動點(diǎn),當(dāng)P到圓心C的距離最小時,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知($\sqrt{x}$-$\frac{a}{\sqrt{x}}$)5的展開式中含x${\;}^{\frac{3}{2}}$的項的系數(shù)為30,則實(shí)數(shù)a=-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)對任意的實(shí)數(shù)滿足:$f(x+3)=-\frac{1}{f(x)}$,且當(dāng)-3≤x<-1時,f(x)=-(x+2)2,當(dāng)-1≤x<3時,f(x)=x,則f(1)+f(2)+f(3)+…+f(2015)=336.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在△ABC中,內(nèi)角A,B,C所對的三邊分別是a,b,c,已知a=5,b=6,C=30°,則$\overrightarrow{BC}•\overrightarrow{CA}$=-15$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在△ABC中,∠ABC=90°,AB=$\sqrt{3}$,BC=2,點(diǎn)P為△ABC內(nèi)一點(diǎn),若∠BPC=90°,PB=1,則PA=( 。
A.4-$\sqrt{3}$B.$\frac{{\sqrt{7}}}{2}$C.$\sqrt{7}$D.1

查看答案和解析>>

同步練習(xí)冊答案